The F-distribution
Let \(X_1, X_2, \ldots, X_n \) be a random sample from a normal distribution with mean \(\mu \) and variance \(\sigma^2 \), and let \(S^2 \) be the sample variance. Then the random variable

\[
X^2 = \frac{(n - 1) S^2}{\sigma^2}
\]

has a chi-square (\(\chi^2 \)) distribution with \(n - 1 \) degrees of freedom.
χ^2 Distribution

Graph showing the χ^2_k distribution for different values of k: $k=1, k=2, k=3, k=4, k=6, k=9$. The graph plots $f_k(x)$ against x for each value of k. The curves represent the probability density functions for each degree of freedom.
The *F* Distribution

Let *W* and *Y* be independent chi-square random variables with *u* and *v* degrees of freedom respectively. Then the ratio

\[F = \frac{W/\nu}{Y/\nu} \]

has the probability density function

\[
f(x) = \frac{\Gamma\left(\frac{u + v}{2}\right) \left(\frac{u}{v}\right)^{u/2} x^{(u/2) - 1}}{\Gamma\left(\frac{u}{2}\right) \Gamma\left(\frac{v}{2}\right) \left[\left(\frac{u}{v}\right)x + 1\right]^{(u+v)/2}}, \quad 0 < x < \infty
\]

and is said to follow the distribution with *u* degrees of freedom in the numerator and *v* degrees of freedom in the denominator. It is usually abbreviated as *F*_{*u,v*}.
The F Distribution
The *F* Distribution

Let \(X_{11}, X_{12}, \ldots, X_{1n_1} \) be a random sample from a normal population with mean \(\mu_1 \) and variance \(\sigma^2_1 \), and let \(X_{21}, X_{22}, \ldots, X_{2n_2} \) be a random sample from a second normal population with mean \(\mu_2 \) and variance \(\sigma^2_2 \). Assume that both normal populations are independent. Let \(s_1^2 \) and \(s_2^2 \) be the sample variances. Then the ratio

\[
F = \frac{s_1^2 / \sigma^2_1}{s_2^2 / \sigma^2_2}
\]

has an *F* distribution with \(n_1 - 1 \) numerator degrees of freedom and \(n_2 - 1 \) denominator degrees of freedom.
The F Distribution

Null hypothesis: \[H_0 : \sigma_1^2 = \sigma_2^2 \]

Test statistic: \[F_0 = \frac{S_1^2}{S_2^2} \quad \text{(10-31)} \]

<table>
<thead>
<tr>
<th>Alternative Hypotheses</th>
<th>Rejection Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_1 : \sigma_1^2 \neq \sigma_2^2$</td>
<td>$f_0 > f_{\alpha/2, n_1-1, n_2-1}$ or $f_0 < f_{1-\alpha/2, n_1-1, n_2-1}$</td>
</tr>
<tr>
<td>$H_1 : \sigma_1^2 > \sigma_2^2$</td>
<td>$f_0 > f_{\alpha, n_1-1, n_2-1}$</td>
</tr>
<tr>
<td>$H_1 : \sigma_1^2 < \sigma_2^2$</td>
<td>$f_0 < f_{1-\alpha, n_1-1, n_2-1}$</td>
</tr>
</tbody>
</table>

\[f_{\alpha/2, n_1-1, n_2-1} = \frac{1}{f_{1-\alpha/2, n_2-1, n_1-1}} \]