### Jordan University of Science and Technology Faculty of Engineering Electrical Engineering Department

### EE524 RF Communication Circuits (3-0-3) 2<sup>nd</sup> Semester 2018/2019

### **CATALOG DESCRIPTION (2013):**

3 Credit hours (3 h lectures, R<sup>1</sup>). Large-signal analysis. Network noise analysis. Tuned amplifiers. Intermodulation distortion. RF oscillators. Super-heterodyne receivers. Phase-locked loops. Frequency synthesizers. Mixers, modulators and demodulators. RF power amplifiers.

**Text Book:** Modern Communication Circuits , Jack Smith, 2<sup>nd</sup> edition, McGraw-Hill, 1998.

#### **References:**

1- RF Microelectronics, Behzad Razavi, Prentice Hall, 2<sup>nd</sup> Edition, 2011.

**Prerequisites by topics**: Semiconductor theory, electronic circuits, modulation techniques.

**Prerequisites by course**: Analog Communications (EE 450), Electronic Circuits (EE320)

Co-requisites by course: none, Prerequisite for: none

#### **Instructor: Dr. Mansour Abbadi**

Electrical Engineering Department, Jordan University of Science & Technology, Irbid, Jordan

Email: mabbadi@just.edu.jo

Tel. Work: 962-2-7201000 (Ext. 22550), Mobile: 0795574238

Blog: http://mansourabbadi.blogspot.com/

| Course Outline |                                                                                           |                  |            |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------|------------------|------------|--|--|--|--|--|
| Week           | Topic                                                                                     | Reading          | Assignment |  |  |  |  |  |
| 1              | Introduction to the hardware of communication systems.                                    | Ch.1: 1.1-5      |            |  |  |  |  |  |
| 2-3            | Network noise & intermodulation distortion.                                               | Ch.3: 3.1-3.5    |            |  |  |  |  |  |
| 4-6            | Oscillators: sinusoidal oscillators, crystal oscillators, voltage-controlled oscillators. | Ch.7: 7.1-7.7    |            |  |  |  |  |  |
|                | First Exam                                                                                |                  |            |  |  |  |  |  |
| 7-9            | Phase-locked loops: PLL model, phase detectors, VCOs, loop filters, PLL applications.     | Ch.8: 8.1-8.9    |            |  |  |  |  |  |
| 10-11          | Frequency synthesizers: direct, PLL, and direct digital frequency synthesizers.           | Ch.10: 10.1-10.5 |            |  |  |  |  |  |
|                | Second Exam                                                                               |                  |            |  |  |  |  |  |
| 12-13          | Power amplifiers: class A, class B, and class C.                                          | Ch.11: 11.1-11-4 |            |  |  |  |  |  |
| 14-15          | Mixers, modulators, and demodulators                                                      | Ch.12: 12.1-12.5 |            |  |  |  |  |  |
|                | Final Exam                                                                                |                  |            |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Required of all students in the B.Sc. of Electrical Engineering - Communications (2013) Program

### **Evaluation**

## Homework 5%, Quizzes 5%, Two mid-term Exams 50%, Final Exam 40%

Category Content: Engineering Science: 30 %; Engineering design: 70%

## **Objectives and Outcomes<sup>2</sup>**

| Objectives                                                                                                                                                                                                                                                                                                                                       | Outcomes                                                                                                                                                                                                                                                                                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ol> <li>Study the sources of noise and distortion in communication circuits and their role in determining the sensitivity and the dynamic range of communication receivers. [1,2]</li> <li>Study and design the different types of oscillators which are used in communication systems such as conventional, crystal, and VCO. [1,2]</li> </ol> | 1: Able to identify the sources of noise and distortion in communication circuits and design low noise networks and able to calculate the sensitivity and the dynamic range of communication receivers. [1,2]  2: Able to design different types of oscillators for different communication systems. [1,2] |  |  |
| 3: Study the structure and characteristics of phase-locked loops and able to design them for different applications in communication systems. [1,2]                                                                                                                                                                                              | 3: Able to analyze and design phase-<br>locked loops for different<br>applications in communication<br>systems. [1,2]                                                                                                                                                                                      |  |  |
| 4: Study the different types of frequency synthesizers such as direct, PLL, and direct digital and able to design them for different applications. [1,2]                                                                                                                                                                                         | 4: Able to design frequency synthesizers for different applications in communication systems. [1,2]                                                                                                                                                                                                        |  |  |
| 5: Study the different types of power amplifiers such as class A, class B, and class C, and able to design them for different applications. [1,2]                                                                                                                                                                                                | 5: Able to design different types of power amplifiers for different applications in communication systems. [1,2]                                                                                                                                                                                           |  |  |
| 6: Study the different types of mixers, modulators and demodulators. [1,2]                                                                                                                                                                                                                                                                       | 6: Able to design different types of mixers, modulators and demodulators for communication systems. [1,2]                                                                                                                                                                                                  |  |  |

# **Contribution of Course to Meeting the Professional Component**

The course contributes to building the fundamental basic concepts, applications, and design of Electrical Engineering.

# **Relationship to Program Outcomes (%)**

| 1  | 2  | 3 | 4 | 5 | 6 | 7 |
|----|----|---|---|---|---|---|
| 50 | 50 |   |   |   |   |   |

<sup>&</sup>lt;sup>2</sup> Numbers in brackets refer to the Program outcomes