CPE 746 Embedded Real-Time Systems-Fall06

Introduction to Types of RTSs

Prepared By:
Yaser Jararwah & Abdurrahman Abu Alhaj

Supervised By:
Dr. Lo’ai Tawalbeh

Computer Engineering Department
Jordan University of Science and Technology
Embedded Systems

- An embedded system is a special-purpose system in which the computer is completely encapsulated by the device it controls.
- Unlike a general-purpose computer, such as a personal computer, an embedded system performs pre-defined tasks, usually with very specific requirements.
- Since the system is dedicated to a specific task, design engineers can optimize it, reducing the size and cost of the product.
- Embedded systems are often mass-produced, so the cost savings may be multiplied by millions of items.
Main Components

- It is divided into 4 segments namely: embedded processors, embedded software, embedded boards and embedded memory.

 - Embedded processors is divided into microcontroller (MCU), microprocessor (MPU), and digital signal processor (DSP) segments.

 - Embedded Memory includes various types of random access memory (RAM) and programmable read-only memory (PROM) memory, as well as flash memory.

 - Software for embedded applications which includes real-time operating systems (RTOS) and portable operating systems
Embedded operating system

- An embedded operating system is an operating system dedicated for embedded computer system.
- These operating systems are designed to be very compact and efficient, with many functionalities that non-embedded computer operating systems provide, and which may not be used by the specialized applications they run.
- They are frequently also Real time operating system.
Real-time operating system (RTOS)

- Is a class of operating system intended for Real-time applications.
- RTOS will typically use specialized scheduling algorithms in order to provide the real-time developer with the tools necessary to produce deterministic behavior in the final system.
- Two type of RTOS
 - An event-driven operating system.
 - A time-sharing design switches tasks on a clock interrupt.
Real Time Constraints

- Many Embedded Systems must meet real-time constraints
 - A real-time system must react to stimuli from the controlled object (or the operator) within the time interval dictated by the environment.
 - For real-time systems, right answers arriving too late are wrong.

- Frequently connected to physical environment through sensors and actuators.

- Event-driven (RTOS) mapped between the percepts (sensors) and the proportional acts.
Embedded Systems Market

Anti-lock brakes Modems
Auto-focus cameras MPEG decoders
Automatic teller machines Network cards
Automatic toll systems Network switches/routers
Automatic transmission On-board navigation
Avionic systems Pagers
Battery chargers Photocopiers
Camcorders Point-of-sale systems
Cell phones Portable video games
Cell-phone base stations Printers
Cordless phones Satellite phones
Cruise control Scanners
Curbside check-in systems Smart ovens/dishwashers
Digital cameras Speech recognizers
Disk drives Stereo systems
Electronic card readers Teleconferencing systems
Electronic instruments Televisions
Electronic toys/games Temperature controllers
Factory control Theft tracking systems
Fax machines TV set-top boxes
Fingerprint identifiers VCR’s, DVD players
Home security systems Video game consoles
Life-support systems Video phones
Medical testing systems Washers and dryers
Embedded systems from real life (Cars)

- **Multiple processors**
 - Up to 100 Networked together

- **Multiple networks**
 - Body, engine, telemetric, media, safety

- Large diversity in processor types:
 - 8-bit – door locks, lights, etc.
 - 16-bit – most functions
 - 32-bit – engine control, airbags

- Functions by embedded processing:
 - ABS: Anti-lock braking systems
 - ESP: Electronic stability control
 - Airbags
 - Efficient automatic gearboxes
 - Theft prevention with smart keys
 - Blind-angle alert systems
 - ... etc ...
The future is embedded, Embedded is the future!

- Growing economical importance of embedded systems: Worldwide
 - mobile phone sales surpassed 156.4 mln units in Q2 2004, a 35% increase from Q2 2003
 - The worldwide portable flash player market exploded in 2003 and is expected to grow from 12.5 mln units in 2003 to over 50 mln units in 2008.
 - The number of broadband lines worldwide increased by almost 55% to over 123 mln in the 12 months to the end of June 2004.
 - Today's DVR (digital video recorders) users - 5% of households - will grow to 41% within five years.
 - 79% of all high-end processors are used in embedded systems.
 - Cars market, peripheral computer devices
What's the market for Embedded Systems?

- The world market for embedded systems development is around $250 billion and is expected to grow at 26%.

- Cisco, Wind River Systems, Sun Microsystems, Integrated Systems, Microwave Systems, and QNX Software Systems are among the prominent developers of embedded systems.

- According to a study, Future of Embedded Systems Technologies, the market for embedded systems is expected to grow at an average annual growth rate of 16% over the period.
What's the future of embedded systems in the world (in India as an example)?

• At present India exports embedded systems worth to the tune of $+10 billion and this could grow to $50 billion within two to three years.

• Embedded system requires considerable domain knowledge, say in automotive, telecom or medical for which the system has to be designed.

• 15% of HCL staff is working on embedded systems. It contributes more than 30% of HCL Technologies revenues.

• Wipro has around 4,000 people in embedded systems. If the telecom services are included then the number goes up to 9,000.
Common Characteristics of Embedded Systems

- Single-functioned
 - Executes a single program, repeatedly

- Tightly-constrained
 - Low cost, low power, small, fast, etc.

- Reactive and real-time
 - Continually reacts to changes in the system’s environment
 - Must compute certain results in real-time without delay
An embedded system example -- a digital camera

- Single-functioned -- always a digital camera
- Tightly-constrained -- Low cost, low power, small, fast
- Reactive and real-time.
Optimizing Design Metrics

- **Common metrics**
 - **Unit cost**: the monetary cost of manufacturing each copy of the system, excluding NRE cost
 - **NRE cost (Non-Recurring Engineering cost)**: The one-time cost of designing the system
 - **Size**: the physical space required by the system
 - **Performance**: the execution time or throughput of the system
 - **Power**: the amount of power consumed by the system
 - **Flexibility**: the ability to change the functionality of the system without incurring heavy NRE cost
 - **Time-to-prototype**: the time needed to build a working version of the system
 - **Time-to-market**: the time required to develop a system to the point that it can be released and sold to customers
 - **Maintainability**: the ability to modify the system after its initial release
 - **Correctness, safety, many more**
NRE and unit cost metrics

- Costs:
 - Unit cost: the monetary cost of manufacturing each copy of the system, excluding NRE cost
 - NRE cost (Non-Recurring Engineering cost): The one-time monetary cost of designing the system
 - total cost = NRE cost + unit cost * # of units
 - per-product cost = total cost / # of units
 \[\text{cost} = \frac{\text{NRE cost}}{\text{# of units}} + \text{unit cost} \]

- Example
 - NRE=$2000, unit=$100
 - For 10 units
 - total cost = $2000 + 10*$100 = $3000
 - per-product cost = $2000/10 + $100 = $300
Time-to-market: a demanding design metric

- Time required to develop a product to the point it can be sold to customers
- Market window
 - Period during which the product would have highest sales
- Average time-to-market constraint is about 8 months
- Delays can be costly
The performance design metric

- Widely-used measure of system
 - Clock frequency, instructions per second – not good measures
 - Digital camera example – a user cares about how fast it processes images, not clock speed or instructions per second
- Latency (response time)
 - Time between task start and end
 - e.g., Camera A process images in 0.25 seconds
- Throughput
 - Tasks per second, e.g. Camera A processes 4 images per second
 - Throughput can be more than latency seems to imply due to concurrency, e.g. Camera B may process 8 images per second (by capturing a new image while previous image is being stored).
Embedded system technologies

○ Technology
 - A manner of accomplishing a task, especially using technical processes, methods, or knowledge

○ Three key technologies for embedded systems
 - Processor technology
 - IC technology
 - Design technology
Processor technology

- The architecture of the computation engine used to implement a system’s desired functionality
- Processor does not have to be programmable
 - “Processor” *not* equal to general-purpose processor

General-purpose ("software")

Application-specific

Single-purpose ("hardware")
IC technology

- The manner in which a digital (gate-level) implementation is mapped onto an IC
 - IC: Integrated circuit, or “chip”
 - IC technologies differ in their customization to a design
 - IC’s consist of numerous layers (perhaps 10 or more)
 - IC technologies differ with respect to who builds each layer and when
IC technology

- Three types of IC technologies
 - Full-custom (VLSI)
 - Semi-custom (ASIC)
 - PLD (Programmable Logic Device) (FPGA)
Full Custom

- **Very Large Scale Integration (VLSI)**
 - All layers are optimized.
- **Placement**
 - Place and orient transistors.
- **Routing**
 - Connect transistors
- **Benefits**
 - Excellent performance, small size, low power
- **Drawbacks**
 - High cost long, time-to-market
Semi-custom (ASIC)

- Lower layers are fully or partially built
 - Designers are left with routing of wires and maybe placing some blocks

- Benefits
 - Good performance, good size, less NRE cost than a full-custom implementation (perhaps $10k to $100k)

- Drawbacks
 - Still require weeks to months to develop
PLD (Programmable Logic Device)

- **(FPGA)** Field Programmable Gate Array
- All layers already exist
 - Designers can purchase an IC
 - Connections on the IC are either created or destroyed to implement desired functionality.
 - Field-Programmable Gate Array (FPGA) very popular
- Benefits
 - Low NRE costs, almost instant IC availability.
 - Great time to market
- Drawbacks
 - Bigger, expensive (perhaps $30 per unit), power hungry, slower
Moore’s law

- The most important trend in embedded systems
 - Predicted in 1965 by Intel co-founder Gordon Moore

IC transistor capacity has doubled roughly every 18 months for the past several decades

Note: logarithmic scale
Moore’s law

- This growth rate is hard to imagine, most people underestimate
- How many ancestors do you have from 20 generations ago
 - i.e., roughly how many people alive in the 1500’s did it take to make you?
 - $2^{20} = \text{more than 1 million people}$
- *(This underestimation is the key to pyramid schemes!)*
Graphical illustration of Moore’s law

- Something that doubles frequently grows more quickly than most people realize!
 - A 2002 chip can hold about 15,000 1981 chips inside itself
Design Technology

- The manner in which we convert our concept of desired system functionality into an implementation.

Compilation/Synthesis:
Automates exploration and insertion of implementation details for lower level.

Libraries/IP: Incorporates pre-designed implementation from lower abstraction level into higher level.

Test/Verification: Ensures correct functionality at each level, thus reducing costly iterations between levels.
Detailed Example
Detailed Example

XC2S300E FPGA
XC9572 CPLD
256K x 16 SRAM
8M x 16 SDRAM
512K x 8 Flash
6-channel NTSC video decoder
12-bit, 30 MSPS ADC
80 MHz, 30-bit video DAC
20-bit, 4-input, 1-output stereo codec
Microphone/line-in/line-out jacks
10/100 Ethernet MAC+PHY
USB 2.0 peripheral port
Six pushbuttons, DIP switch
Two LED digits, barograph
Three programmable oscillators
Two expansion headers w/ 75 I/O pins
Peripheral header w/ 18 I/O pins
Parallel and Serial port
Compact Flash interface
IDE hard disk interface
Embedded Systems – p. 22/24
Summary

- Embedded systems are everywhere
- Key challenge: optimization of design metrics
 - Design metrics compete with one another
- A unified view of hardware and software is necessary to improve productivity
- Three key technologies
 - Processor: general-purpose, application-specific, single-purpose
 - IC: Full-custom, semi-custom, PLD
 - Design: Compilation/synthesis, libraries/IP, test/verification