Department of Biomedical Engineering
BME 317

Medical Electronics Lab
<table>
<thead>
<tr>
<th>Exp #</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An Introduction To Basic Laboratory Equipments</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Diodes Characteristics and Applications</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Common Emitter Amplifier and Characteristics</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>JFET Characteristics and Applications</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Operational amplifier characteristics and applications</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Active filters and Oscillator</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Transistor as switching elements</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>TTL and CMOS Logic gates and interfacing</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>Multi vibrator using 555 Timers</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>Schmitt Trigger characteristics and wave form generations</td>
<td>38</td>
</tr>
</tbody>
</table>
Experiment #1

An Introduction to Basic Laboratory Equipment

Objective:
To become familiar with the available test and measurement equipment.

Measuring and Testing Equipment:

1. The Digital Multimeter (DMM).
 It functions as an ohmmeter, Ammeter, and voltmeter. The ohmmeter measures practically constant or variable resistance.
 The ammeter measures the direct current or the rms value of the current by connecting it in series with the circuit under test. At the time of connecting or disconnecting of the ammeter to the certain circuit, the power supply should be switched off.
 The voltmeter measures the direct voltage or the rms value of voltage by connecting it in parallel with the circuit under test.

2. The Oscilloscope (OSC).
 It is basically a voltage sensing and display device. It cannot measure current directly. The main functions of it are:
 1. AC and DC measurements.
 2. Phase shift Measurements.
 3. Frequency measurements.

3. The Function Generator.(FG).
 It provides voltages of different waveforms, output voltage frequency and amplitude have a wide dynamic range. An adjustable level of DC offset is also available.

Practical Procedure:
I. DC Measurements.

1. Connect the circuit shown in the Figure#1.

\[
\text{\begin{center}
\begin{tikzpicture}
\draw (0,0) node (A) {CH1} -- (1,1) node (B) {1k} -- (2,0) node (C) {CH2} -- (0,0);
\draw (B) -- (1,-1) node (D) {10K};
\draw (1,0) node (E) {FG};
\end{tikzpicture}
\end{center}}
\]

Figure#1

2. Adjust the DC offset of the FG to get a +10VDC on the screen of channel 1 of the OSC.
3. Use channel 2 to measure the output voltage across the 10KΩ resistor.

...

4. Measure the same voltage using DMM.

...

II. AC Measurements.

1. On the FG, switch off the DC offset and insert the following input: sinusoidal, 10Vp-p and 1 KHz.
2. Using Ch2, measure the output p-p voltage.........................

3. Measure the same voltage using DMM (r m s).........................
Experiment # 2
Diode Characteristics & Applications

Introduction:

When the diode anode is at a higher potential than the cathode, the diode is forward biased, and current flows from anode to cathode. The diode is a nonlinear device with a barrier potential (for Ge = 0.3 V, and for Si = 0.7 V). The Zener diode is used in reverse biased as a simple voltage regulator.

Diode clippers are wave shaping circuits in that they are used to prevent signal voltages from going above or below certain levels.

The clamper circuits add a dc level to the input waveform. Thus, the clamper is often referred to as a dc restorer.

Half wave and full wave rectifier circuits cause AC input voltage to be converted into a pulsed waveform having an average, or, DC, voltage output. A filter that consists of an R-C circuit smoothes out the pulsating output voltage of the rectifier.

Objectives:

The purpose of this experiment is to investigate the diode characteristics and its applications such as half wave rectifier, full wave rectifier, and voltage regulator using Zener diode.

Equipments & Components:

- Analog signal generator (FG), Dual trace oscilloscope(Scope), (DMM)
- Diodes (4), Zener diode (1),
- Resistors: 1k, 15k, 10K, and 220Ohm.
- Capacitors: 2.2µ and 10 µF
Procedure:

I. Diode Testing:

Using DMM, test the diode by the diode check feature of the DMM, if the DMM reads a barrier potential, then it is forward biased. When it is reverse biased, the DMM reads 2.99 (open circuit).

<table>
<thead>
<tr>
<th>Status</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward biased</td>
<td></td>
</tr>
<tr>
<td>Reversed biased</td>
<td></td>
</tr>
</tbody>
</table>

II. Diode Characteristics:

1. Wire the circuit shown in Figure#1.

2. Adjust the DC supply voltage to give input voltages as indicated in Table# 1. For each voltage measure and record the dc voltage drop across the diode (Vd) and determine the diode current by measuring the voltage across the R (using ohm’s law in each case).

Table #1

<table>
<thead>
<tr>
<th>Vs</th>
<th>Vd</th>
<th>Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure#1
3. Now reverse the diode then adjust the DC supply as shown in Table#2. Record the corresponding current and diode voltage.

<table>
<thead>
<tr>
<th>Vs</th>
<th>Vd</th>
<th>Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table#2

4. Plot the resulting diode characteristic curve (Id versus Vd) on graph paper.
5. Graphically determine the forward resistance of the diode. (Rf)

III. Diode Applications:

A. The diode Clipper:

1. Wire the circuit shown in Figure#2 with Vin = 5Vp-p, sine wave at a frequency of 200Hz.
2. On a graph paper, sketch your clipped waveform (across the diode), showing the positive and negative peak values.

![Figure#2](image)

B. Diode Clamper:

1. Wire the circuit shown in the figure#3 with Vin = 5Vp-p, sine wave at a frequency of 1 KHz.
2. On a graph paper, sketch the input and the output Waveforms, showing the positive and negative peak values for both.

![Figure 3](image3.png)

C. Half-wave Rectifier

1) Wire the circuit shown in Figure 4 with \(V_{in} = 15 \text{Vp-p}, \) sine wave at a frequency of 100Hz.

2) On a graph paper, sketch the input and the output Waveforms and measure the following: \(V_p \) (out) and \(V(\text{out})_{\text{DC}}. \)

![Figure 4](image4.png)

D. Full-wave Rectifier

1. Wire the circuit shown in Figure 5 with \(V_{in} = 15 \text{Vp-p}, \) sine wave at a frequency of 100Hz.

2. Connect ch1 of the scope between D1 and D3 and Ch2 between D4 and D2, Use the add button with ch2 inverted in order to get \(V_{10K} = \text{ch1-ch2}. \)
3. On a graph paper, sketch the output waveform and measure the following: \(V_{p(out)} \) and \(V_{DC} \).

![Figure#5](image)

4. Filtering: Add a capacitor 2.2\(\mu \)F in parallel with 10K, sketch the output and measure \(V_{p(out)} \), \(V_{DC(out)} \), \(V_{ripple}(p-p) \) and \(V_{ripple}(rms) \).

E. Zener Diode Voltage Regulator:

1. Wire the circuit shown in figure#6 and measure:
 a. \(V_{out} \) (FL): full load output voltage
 b. \(V_{out} \) (NL): No-Load output voltage

Are they equal and why?

![Figure#6](image)
Introduction:

The transistor bias method discussed in this experiment is the common emitter. The common terminal is the one that is common to the input and the output in an ac amplifier. The different bias configurations affect the various parameters of the ac amplifier.

The transistor bias arrangement used most frequently is called the common emitter configuration, in which the emitter terminal is grounded. In the common emitter configuration the input current and voltage are I_B and V_{BE} respectively. The output current and voltage are I_C and V_{CE}. The ratio of collector current to base current is called the current gain β:

$$\beta = \frac{I_C}{I_B}$$

The most important BJT small-signal configuration is the common emitter amplifier. It is extremely useful because it has high voltage gain, high current gain, moderate input resistance and moderate output resistance.

In many common emitter amplifiers, the emitter resistor is bypassed by connecting a capacitor in parallel with it.

Objectives:

1. To construct input and output characteristics for the common emitter biasing arrangement based on laboratory measurements.
2. To demonstrate the operation and characteristics of small-signal common emitter amplifiers.

Equipments & Components:

- DMM, SCOPE, FG,
- 2N2222 silicon transistor or equivalent
- Resistors: 1 kΩ, 100 Ω, 56kΩ, 12kΩ, 3.3kΩ, and 2.2kΩ,
• Potentiometers: 1M Ω, and 10kΩ
• Capacitors: 47µF, and 2.2µF

Procedure:

I. Common Emitter Characteristics:

1. To determine the output characteristics of the common emitter configuration set the 10k Ω potentiometer in the circuit of Figure #1 to its maximum setting. This will cause \(V_{CE} \) to decrease approximately to 0V. Then adjust the 1MΩ Potentiometer to set \(I_B \) to 10µA. Note that when \(V_{RB} \) is 10mV, \(I_B \) is 10µA. Next adjust the 10k Ω potentiometer for all values of \(V_{CE} \) in Table 1 making sure that \(I_B \) remains constant.

2. Measure the voltage across the 100Ω resistor for each combination of \(V_{CE} \) and \(I_B \) in Table#1 and record \(I_C \)

<table>
<thead>
<tr>
<th>(V_{CE})</th>
<th>(I_C)</th>
<th>(I_C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I_B = 10\mu A)</td>
<td>(I_B = 20\mu A)</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table#1

3. Plot the output characteristics of the common emitter bias circuit (\(I_C \) vs \(V_{CE} \)).

II. Common Emitter Amplifier:

DC Analysis
1. Wire the circuit shown in Figure #2 (omitting the FG) and measure the DC parameters of the amplifier: V_B, V_C, V_E, V_{CEQ} and I_{CQ}. Recording your results in Table#2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measured values</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_B</td>
<td></td>
</tr>
<tr>
<td>V_C</td>
<td></td>
</tr>
<tr>
<td>V_E</td>
<td></td>
</tr>
<tr>
<td>V_{CEQ}</td>
<td></td>
</tr>
<tr>
<td>$re = \frac{VT}{IEQ}$</td>
<td></td>
</tr>
</tbody>
</table>

Table #2

AC Analysis

1. Connect the FG as shown in Figure #2 and adjust the sine wave output level of the FG at 200mVp-p and a frequency of 10kHz. Measure and record the peak-to-peak output voltage V_o for the following conditions:

<table>
<thead>
<tr>
<th>#</th>
<th>Condition</th>
<th>Vs</th>
<th>Vo</th>
<th>Measured Gain</th>
<th>Expected Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal circuit (Figure #2)</td>
<td>200mVp-p</td>
<td></td>
<td></td>
<td>$\frac{RC}{RE1 + re}$</td>
</tr>
<tr>
<td>2</td>
<td>With $R_{Load} = 2.2K$ (connected between V_{out} and ground)</td>
<td>200mVp-p</td>
<td></td>
<td></td>
<td>$\frac{RC // RL}{RE1 + re}$</td>
</tr>
<tr>
<td>3</td>
<td>No By-Pass Capacitor(47µf)</td>
<td>200mVp-p</td>
<td></td>
<td></td>
<td>$\frac{RC // RL}{RE1 + RE2 + re}$</td>
</tr>
</tbody>
</table>
2. To measure the output resistance \(R_{o\text{stage}} \) of the common emitter amplifier, insert a 10kΩ potentiometer connected as a rheostat in place of \(R_{\text{load}} \). Adjust this potentiometer until \(V_o \) is one-half of the previous output (condition #1). Remove the potentiometer and measure its resistance. By the voltage divider rule, this resistance equals the output resistance of the amplifier.

3. To measure the input resistance \(R_{\text{in\text{stage}}} \) of the common -emitter amplifier, insert a 10kΩ potentiometer connected as a rheostat between (in series with) the input coupling capacitor and the signal generator. Adjust this potentiometer until \(V_o \) is one-half of the previous output (normal circuit). Remove the potentiometer and measure its resistance. Again, by the voltage divider rule, this resistance equals the input resistance of the common emitter amplifier compare to

\[
R_{\text{in}} = RB \|(\beta R_E + \beta \times RE)
\]

Frequency Response

4. To measure the upper and the lower cutoff frequencies of the common emitter amplifier:

- Calculate the cutoff voltage: \(V_{\text{cutoff}} = 0.707 \times V_{\text{out}} \). \(V_{\text{out}} \) of the normal circuit. Decrease the generator's frequency until you reach \(V_{\text{cutoff}} \).
- Measure the generator's frequency; this frequency equals the lower cutoff frequency.

\[
F_l = \frac{1}{2\times\Pi \times C \times R}
\]

*Where C: By-pass capacitor (\(C_E \)) and R: the resistance as seen by the by-pass capacitor.

- For the upper cutoff frequency, increase the generator's frequency until you reach the same voltage (cutoff) and then the generators frequency equals the upper cutoff frequency of the amplifier.
- Draw the frequency response of the amplifier showing the lower and the upper cutoff frequencies.
Experiment # 4
JFET Characteristics and Applications

Objectives:
1. To demonstrate the characteristics of junction field effect transistors.
2. To demonstrate the operation and characteristics of small-signal common source amplifier (CS).

Equipments & Components:
- DMM, SCOPE, FG and DC supply.
- N-channel JFET transistor 2N5457
- Resistors: 0.1 KΩ, 1 KΩ, 1.8 KΩ and 100 KΩ.
- Capacitors: 2.2 µF, and 47 µF.
- 10 KΩ Potentiometer.
- Diode.

Procedure:

I-Common source Characteristics:
1. Connect the circuit shown below in Fig.1.
2. Put \(V_{GS} = 0 \) (this value must be constant during this step), then vary \(E_2 \) to vary \(V_{DS} \), as recorded in Table #1, and measure the corresponding \(I_D \).

![Figure#1](image-url)
Table#1

<table>
<thead>
<tr>
<th>V_{DS} (V)</th>
<th>0</th>
<th>0.3</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_D (mA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Repeat step 2 for $V_{GS} = -1$, then Plot the common source characteristic curve (I_D vs V_{DS}).

II- Transfer Characteristics:
1. Wire the circuit shown in Figure #2, in this part the scope is set up to function as an X-Y plotter, adjust the frequency of the FG to 500Hz and at a signal level sufficient to produce a display similar to the transfer characteristics of the JFET.

2. Estimate from the scope's display both I_{Dss} and $V_{GS(Off)}$.
3. Calculate the JFET forward transconductance at $V_{GS}=0$, (g_{mo}).

$$g_{mo} = \frac{2 \times I_{Dss}}{V_{GS\, (off)}}$$

III- Common Source Amplifier:

1. Wire the circuit shown in Figure#3 omitting the function generator, then measure I_{DQ}, V_{GSQ} and gm. let $V_{DD} = 15V$.
2. Connect the function generator as shown in Figure #3, and adjust the sine wave output level of the function generator at 0.3 Vp-p and a frequency of 5 KHz.

3. On a graph paper, sketch the input and output voltages. Note the phase shift between the input and output signals.

4. Measure the voltage gain for the cases in Table #2.

<table>
<thead>
<tr>
<th>#</th>
<th>Condition</th>
<th>Vs</th>
<th>Vo</th>
<th>Measured Gain</th>
<th>Expected Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal Circuit(Fig#3)</td>
<td>300mVp-p</td>
<td>300mVp-p</td>
<td></td>
<td>(gm \times (RL // RD))</td>
</tr>
<tr>
<td>2</td>
<td>No Load</td>
<td>300mVp-p</td>
<td></td>
<td></td>
<td>((gm \times RD))</td>
</tr>
<tr>
<td>3</td>
<td>No By-Pass Capacitor</td>
<td>300mVp-p</td>
<td></td>
<td></td>
<td>(\frac{ (gm \times RD)}{1 + (gm \times Rs)})</td>
</tr>
</tbody>
</table>

Table #2

4. Measure Ri and Ro for Condition #2, use 1MΩ potentiometer for \(R_{in} \), why?

5. Measure the lower and the upper cutoff frequencies for Condition #2.
Experiment# 5
Operational Amplifier
Characteristics & Applications

Introduction:

The operational amplifier is probably the most frequently used linear integrated circuit available. Operational amplifiers ideally have infinite open-loop gain and infinite open loop input resistance. Open-loop characteristics refer to those of an amplifier having no feedback components between input and output. Closed-loop characteristics are those of an amplifier having external feedback components.

An op-amp is so named because it is originally designed to perform mathematical operations like summation, subtraction, multiplication, differentiations and integration.

Objectives:

1. To measure some characteristics of the operational amplifier.
2. To demonstrate the use of op-amp for performing mathematical operations.

Equipments & components:

- DMM, OSC, FG and PS
- OP-AMP 741 or equivalent
- Potentiometer: 10K
- Resistors: 10 KΩ, 1 KΩ, 50 KΩ, 100 KΩ, 1000 KΩ and 470 KΩ
- Capacitors: 0.0022 μF
Experimental Procedure:

I. Slew Rate

The slew rate is the maximum rate of change of the output voltage with time

\[S = \frac{\partial v_o}{\partial t} \bigg|_{max} \]

The slew rate limits the high frequency response because at high frequencies there is a large rate of change of voltage. The maximum sinusoidal frequency (\(f_s (max) \)) at which an operational amplifier having slew rate \(S \) can be operated without producing any distortion is:

\[f_s (max) = \frac{S}{(2\pi \times V_{p(out)})} \]

1. Wire the circuit shown in Figure #1 with \(V_{in} = 2V_p-p \), square wave and a frequency of 1KHz

2. Adjust the time base of the oscilloscope so that only one changing edge of the output waveform can be viewed (either a low to high voltage change or a high to low change).

![Figure # 1](image)

Note: To view \(\Delta t \) clearly expand the time base on the oscilloscope so that the change in time \(\Delta t \) can be observed. Then measure \(\Delta V \), and \(\Delta t \). Use these values to calculate the slew rate. Compare the calculated slew rate with the manufacturer's specifications (data sheet).

3. Find the maximum frequency due to slew rate limitation.
4. Change Vin to a 20 Vp-p, 1 KHz sinusoidal signal. Let Rf be 10 KΩ. Increase the frequency beyond the calculated maximum frequency. Note the changes in the output signal.

II. Output Offset Voltage:

Output offset voltage is the dc voltage that appears at the output of the operational amplifier when both inputs are zero volts. This voltage is caused by input offset voltage, due to slightly mismatched transistors in the differential amplifier input stage, and differences in input bias currents.

The output offset voltage due to differences in input bias currents can be reduced by appropriately connecting a dummy resistor in the circuit.

The 741 operational-amplifier has externally-accessible terminals that can be used to null, or balance the amplifier, i.e, to minimize the output offset when both inputs are zero. A potentiometer is connected and adjusted as explained in datasheets.

1. Wire the circuit shown in Figure # 2. Using DMM, measure the dc output voltage.

![Figure#2](image)

2. Now replace the short-circuit to ground on the non-inverting input with a 470K resistor to ground, repeat step #1.

3. To demonstrate how a 741 amplifier can be balanced, connect a potentiometer as shown in Figure # 3. While measuring Vout with a DMM, adjust the potentiometer until the output offset voltage is as close to 0V as possible.
III. Inverting Amplifier.

1. Wire the circuit shown in Figure #4. Adjust the sine wave output level of the FG at 200mVp-p and a frequency of 1 KHz. Measure and record the p-p output voltage.

*Replace the 10KΩ resistor with a 820KΩ, sketch the resulting output, Explain.

2. Reconnect the circuit shown in figure#4 in order to obtain a non-inverting amplifier. Measure and record the V_{out} (p-p).

3. Reconnect the circuit shown in figure#4 in order to obtain a voltage follower. Measure and record the V_{out} (p-p).

VI. Summing Amplifier:

1. Wire the circuit shown in Figure #5. Adjust the FGF at 2Vp-p and a frequency of 1 KHz. with the scope set to dc coupling, sketch the output voltage waveform. Be sure to note the dc level in the output.
V. Practical Integrator:

1. Wire the circuit shown in Figure #6 with $V_{in} = 0.5V_{p-p}$, sine wave and a frequency of 10KHz. With $C_1 = 0.0022\, \mu F$, $R_f = 100K\Omega$ and $R_1 = 10K\Omega$, measure and record the p-p output voltage and wave-shape of V_{out}. Measure the phase shift between the input and the output for the frequencies in Table #1.
3. Measure the upper cutoff frequency of the circuit shown in Figure 6 and draw the frequency response showing the value of the mid-band gain.
Experiment 6
Active Filters & Oscillators

Introduction:

I. Filters:

Active filters usually use IC operational amplifiers to provide gain and impedance matching, together with passive RC circuit to provide the desired frequency response. Filters are named after their frequency response characteristics: low-pass, high-pass, band-pass and band-stop filters.

A low-pass filter passes low frequencies and attenuates high frequencies, a band-pass filter allows a range (band) of frequencies to pass while attenuating frequencies outside the band on either side.

The frequency at which the output voltage equals 0.707 times the input voltage is referred to as the high or low frequency roll-off point. This point is also defined as the frequency at which the output voltage has dropped by 3 dB.

Each kind of filter's response can be customized slightly by changing circuit components to achieve certain characteristics that are useful in electronic applications.

A filter is said to have a Butterworth, Chebyshev, or Bessel characteristics. The choice of characteristic is based on the application and factor such as the need for a linear phase shift with frequency (Bessel), or maximum roll-off of somewhat over -20dB/decade (Chebyshev), or a maximally flat response in the pass band (Butterworth).

II. Oscillators:

In feedback amplifier if the loop gain = 1 the amplifier will become critical stable. This will occur at a single frequency f_r, in other words the closed loop gain of the amplifier will become infinite at only one frequency f_r. Physically this means that an output is possible with no input.

*Loop Gain = closed-loop gain × Feed back ratio

The Wien bridge oscillator is an example of low frequency oscillators and it's used to generate sinusoidal signals at frequencies ranging from 5Hz to 1MHz.
Objectives:

1. To demonstrate the operation and characteristics of the low and high pass active filters.
2. To demonstrate the operation of Wien bridge oscillators

Equipments and components:

- DMM, Scope, FG, PS
- OP-AMP 741 or equivalent
- Resistors: 47k, 27k, 10k, 6.8k, 1.5k, and 1k Ω.
- Capacitors: 0.033 μF, 0.0047 μF, 0.1 μF, and 0.47 μF

Experimental Procedure:

I- Butterworth 2nd -order low-pass filter

1. Wire the circuit shown in Figure #1 with VIN= 1Vp-p and sine wave.

![Figure #1](image.png)

*Cut-off frequency, \(f_c = \frac{1}{2\pi \times \sqrt{R1 \times R2 \times C1 \times C2}}. \)

*For Butterworth characteristic, \(RB = 0.586 \times RA. \)
2. Measure and record the mid-band voltage gain and the cutoff frequency. (see page # 13 step 4).

II- Wien bridge oscillator

1. Wire the circuit shown in Figure #2. With $R_1=R_2=R=10 \, k\Omega$ and $C_1=C_2=C=0.1 \mu F$

![Figure#2](image)

2. Carefully adjust the 1kΩ potentiometer until the output waveform has the least amount of distortion. Measure the amplitude and the frequency of this signal.

$$fr = \frac{1}{\left(2\pi R C\right)}$$

3. Replace C_1 and C_2 with 0.47µF. Repeat step 2.
Experiment# 7

Transistors as a Switching Elements (Inverters)

Introduction:

The transistors can operate as switching elements when proper acting signals are used. When used as a switch, the transistor operates in either the on region or in the off region.

When the bipolar junction transistor (BJT) is used as a switch, it's operated in saturation region to simulate the on (closed) switch condition and in the cut-off region to simulate the off (open) switch condition.

On state:

When the base emitter junction is forward-biased and there is enough base current to produce a maximum current ($I_{C(sat)}$) the transistor is in saturated and V_{CE} is approximately zero (the resistance between the collector and the emitter is very low (typically 1Ω to 50Ω)).

$$I_{C(sat)} = \frac{V_{cc}}{R_c}$$

Off state:

When the base emitter junction is reverse-biased, all of the currents are approximately zero and $V_{CE(off)} = V_{CC}$ (the resistance between the collector and the emitter is very high (typically $10M\Omega$)).

Transistor Switching Time:

Because of junction capacitance and charge storage, the transistor don't switch on or off in zero time.

Assume initially that the transistor is being hold off by $V_{in(low)}$, so no collector current flows and $V_o=V_{CC}$. In this situation both transistor junctions are reverse-biased. The
Emitter-Base Junction (EBJ) will be reverse biased by $V_{\text{in}(\text{low})}$. Thus the EBJ capacitance is charged up to $V_{\text{in}(\text{low})}$ and the CBJ capacitance is charged up to $(V_{\text{in}(\text{low})}+V_{\text{CC}})$.

When the V_{in} rises from $V_{\text{in}(\text{low})}$ to $V_{\text{in}(\text{high})}$, the collector current doesn't respond immediately. Rather a delay time elapses before collector current begins to flow. This delay time is required mainly for the EBJ capacitance to charge up to V_{BE} (approximately=0.7V).

Objectives:

1. To demonstrate the characteristics of Bipolar transistors as a switching elements.
2. To demonstrate methods for speeding up the switching times of BJT switch.
3. To demonstrate resistance transistor logic (RTL) NOT and NOR gates.

Equipments & components:

- OSC, FG, PS, DMM.
- Transistors BJT npn.
- Resistors: $100 \text{k}\Omega$, $22 \text{k}\Omega$, $4.7 \text{k}\Omega$, $2.2\text{k}\Omega$, $1 \text{k}\Omega$, $0.5 \text{k}\Omega$, and $0.1 \text{k}\Omega$.
- Capacitor: $1 \mu\text{F}$, $0.1 \mu\text{F}$, and $0.01 \mu\text{F}$.

Procedure:

1. **Switching BJT:**

1. Connect the circuit shown in Figure#1, without C_b and C_o.

![Circuit Diagram](image)
2. Verify the truth table of the inverter.

<table>
<thead>
<tr>
<th>V_{in} (volt)</th>
<th>V_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

3. Set $V_{IN}=10V_{p-p}$ triangular wave with 1KHz frequency, set the scope in the X-Y position, DC coupling. Sketch the transfer characteristics for the inverter.

4. Add $C_o=0.1 \ \mu F$ then set $V_{IN}=4V_{p-p}$ square wave with $f=1$ KHz. Sketch V_{in} and V_o. Increase and decrease the input frequency then note its effect on t_r and t_f (rise and falling times).

5. For table#1. Measure the rise time (t_r) and (t_f) for V_o according to table #1.

<table>
<thead>
<tr>
<th>Case #</th>
<th>C_o (uF)</th>
<th>R_B (kΩ)</th>
<th>R_C (kΩ)</th>
<th>t_r</th>
<th>t_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
<td>22</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>22</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>100</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table #1

6. Connect 1 μF capacitor in parallel with R_B. Measure the rise and fall times.

2- Resistor Transistor Logic:

1. Connect the circuit shown in Figure#2. Complete table #2 and find out the logic function implemented by this circuit.

<table>
<thead>
<tr>
<th>V_A</th>
<th>V_B</th>
<th>V_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Table #2
Experiment# 8

TTL and CMOS Logic Gates & Interfacing

Introduction:

Modern high-speed digital electronics is dominated by two basic logic technologies, those of TTL (Transistor–Transistor logic) and CMOS (Complementary Metal Oxide FET logic). TTL are major members recognized “74” and “54”. The 5V power supply is common to all TTL circuits. For correct operation, its value is critical between 4.75 V and 5.25 V and it must never rise above 7 V, otherwise certain reverse-biased junctions run into breakdown pass excess current and destroy the chip. Each standard TTL input draws a current of 40 μA when held in logic 1 state and feeds out 1.6mA in logic 0 state. CMOS logic is variable alternative to TTL when low power consumption is required. The quiescent current drawn by CMOS gate is typically less than 1 μA compared with 40 μA for TTL. CMOS can be given very good immunity to noise in power supply lines and input circuits; they are known sometimes 4000 series. CMOS today changes TTL in both versatility and operating speed. Unlike TTL, CMOS devices are tolerant of wide variation of supply voltage, from +3 to 15 V.

Objectives:

1. To examine the input, output level and the transfer characteristics of TTL and CMOS logic gates.

2. To study the interfacing between TTL and CMOS gates.

Equipments & components:

- Scope, FG, PS, DMM.
- CMOS NAND Gate 4011
- TTL NAND Gate 74LS00
- Transistors BJT npn (2), pnp (1).
- Resistors 10 KΩ, 47 KΩ, and 1 KΩ.

Procedure:

I- The input characteristics of TTL logic gate.
1. Connect the circuit shown in Figure#1, set $V_{CC} = A_1 = 5$.

![Figure#1](image1.png)

2. Vary B_1 from 0 to A_1 in proper steps and measure V_1 and I_{in} (Current flow through B_1).

II- Output Volt-Ampere characteristics of CMOS NAND gate.

1. Connect the circuit shown in Figure #2, set $V_{DD} = 10V$ connect IN_{1A}, IN_{2A} and node 1 to ground.

![Figure#2](image2.png)

2. Vary R_L from 5kΩ to 0 in proper steps. For each value measure I_L and OUTA (pin

3. Connect IN_{1A}, IN_{2A} and node 1 to V_{DD}, and repeat step 2.
III- TTL Driving Low-Voltage CMOS:

1. Connect the circuit shown in Figure#3 without the pull-up resistor R_P. Measure V_{O1} and V_{O2} when $V_{in} = 0$, and $V_{in} = 5V$.

![Figure#3](image1.png)

2. Connect $R_P = 1$Kohm and repeat step 1.

IV- TTL driving high-voltage CMOS:

1. Connect the circuit shown in Figure#4. Measure V_{O1}, V_{O2} and V_{O3} when $V_{in} = 0$, and $V_{in} = 5V$.

![Figure#4](image2.png)
V- High-voltage CMOS Driving TTL:

1. Connect the circuit shown in Figure#5. Measure V_{O1}, V_{O2} And V_{O3} when $V_{in} = 0$, and $V_{in} = 5V$.

![Figure#5](image-url)
Experiment#9
Multivibrators Using 555 Timer

Introduction:

The 555 timer is an 8-pin IC that can be connected to external components for either monostable or astable operation.

Monostable Operation:

Figure#1 shows the 555 timer connected for monostable operation. It produces a single positive pulse at the output terminal each time a trigger pulse is applied to pin 2. The one shot is triggered by applying a negative going pulse at the trigger input.

Initially when the trigger input is at its high level, the output will be equal to zero. When the trigger input is slightly less than \((V_{CC}/3)\), the comp 1 has a high output and reset the flip flop. This cuts off the transistor, thus the output will switch to \((V_{CC})\) and the capacitor \((C)\) will charge toward \((V_{CC})\) through the resistor \((R)\).
When the capacitor has charged up to \((2V_{CC}/3)\) the threshold voltage will cause the comp2 to have a high output, this will set the flip flop and turns on the transistor. Thus the output will switch back into zero. The circuit is now back to its initial condition and will remain there until another trigger pulse occurs.

The larger the time constant \((RC)\), the longer it takes the capacitor voltage to reach \((2V_{CC}/3)\). In other words, the \((RC)\) time constant controls the duration of the output pulse \((T)\),

\[
T = R \times C \times \ln 3
\]

Astable Operation:

Figure #2 shows the 555 timer connected as astable operation. When the flip flop is low the transistor is cutoff and the capacitor charges with time constant equal to \((R_1 + R_2)C\). The capacitor voltage rises until it goes slightly above \((2V_{CC}/3)\). At this moment the comp2 will have a high output voltage, this voltage drives comp2 to trigger the flip flop so that the output at pin 3 goes low. In addition the transistor is driven on causing the output at pin 7 to discharge the capacitor \((C)\) through the resistor \((R_2)\), when the capacitor voltage decreases below \((V_{CC}/3)\) the comp 1 will have a high output voltage. This high voltage will reset the flip flop and causes the output at pin 3 to go back high.

\[
T_{ch} = C(R_1 + R_2)\ln 2
\]

\[
T_{dch} = C \times R_2 \times \ln 2
\]

\[
T = T_{ch} + T_{dch}
\]

\[
f = \frac{1}{T}
\]

Duty cycle \((D)\) is used to specify how unsymmetrical the output is, and it is given by:

\[
D = \frac{T_{ch}}{T} \times 100\%
\]
Objectives:

1. To demonstrate the use of 555 timer as monostable and astable multivibrators.

2. To design an astable 555 timer with specific frequency and duty cycle.

Equipments and components:

- DMM, OSC, FG, PS
- 555 Timer.
- Resistors: Decade resistance box, 1k Ω.
- Capacitors: 1µF, 0.1µF, 0.01µF, and 0.001µF

Procedure:

I- Monstable Multivibrator:

1. Connect the circuit shown in Figure #1. Use R=4.7 KΩ, C= 1µF, VCC = 5V.

![Figure #1](image)

2. Apply to the trigger input 100 Hz, TTL wave having a duty cycle equal to 80%.

3. Draw the waveforms at pin 7 at the same set of axis with the
input for the first two combinations of R’s and C’s given in Table#1.

4. Measure the pulse width and the amplitude for the voltage at pin 3 and pin 7.

5. Design a monostable multivibrator circuit which has a pulse width equal to T = 4 ms.

<table>
<thead>
<tr>
<th>R (KOhm)</th>
<th>C (uF)</th>
<th>T</th>
<th>V_C</th>
<th>V_O</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table#1

II- Astable Multivibrator:

1. Connect the circuit shown in Figure#2, use $\text{V}_{CC} = 5 \text{V}$, $R_1 = 4.7 \text{ K}$, $R_2 = 68 \text{ K}$, $R_L = 1 \text{ K}$, $C = 1 \text{nF}$.
6. Draw the waveforms at pin 6 at the same set of axis with the output at pin 3 for the first two combinations of R’s and C’s given in Table#2.

7. Measure T_{ch}, T_{dch}, $V_{C\text{ min}}$, $V_{C\text{ max}}$ for all R’s in Table#2.

8. Design an astable multivibrator circuit that has a duty cycle 65% and a frequency of 80 KHz. Use a 1 nF capacitor.

<table>
<thead>
<tr>
<th>R_1 (Kohm)</th>
<th>R_2 (Kohm)</th>
<th>T_{ch}</th>
<th>T_{dch}</th>
<th>$V_{C\text{ min}}$</th>
<th>$V_{C\text{ max}}$</th>
<th>V_O</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table#2
Introduction:

Schmitt trigger is a bistable multivibrator exhibits hysteresis in its transfer characteristics. The bistable multivibrator as its name indicates has two stable states and can remain in either stable state indefinitely and move to the other state only when appropriately triggered. The Schmitt trigger can be constructed using transistors or op-amp also it's available as digital integrated circuits (IC's). The gates 7414 and 7413 are TTL Schmitt trigger, 40106 is a CMOS one.

Op-amp Schmitt trigger circuit with inverting transfer characteristics:

The circuit shown in Figure#1 illustrates a Schmitt trigger with input voltage applied to the inverting input terminal of the op-amp. To derive its transfer characteristics (V_o versus V_in), assume that the op-amp output is saturated at L^+ and so,

$$V_{ref} = \frac{R_1}{R_1 + R_2} \times L^+$$

Now as V_{in} is increased nothing happens until V_{in} is nearly equal to V_{ref}. As V_{in} begins to exceed V_{ref}, a net negative voltage develops between the input terminals of the op-amp. This voltage is amplified by the open-loop gain of the op-amp, and thus V_o goes negative. The voltage divider (R_1, R_2) in turns causes V_{ref} to go negative and thus increasing the net negative voltage input of the op-amp. This process culminates in the op-amp saturating in the negative direction that is with $V_o= L^-$ and correspondingly

$$V_{ref} = \frac{R_1}{R_1 + R_2} \times L^-$$

Now as V_{in} is decreased nothing happens until V_{in} is nearly equal to V_{ref}. As V_{in} begins to exceed V_{ref}, a net positive voltage develops between the input terminals of the op-amp. This voltage is amplified by the open-loop gain of

\[1\] The saturation level of the op-amp is about 1.5V less than the bias supply voltage.
the op-amp, and thus V_o goes positive and so saturating the op-amp in the positive direction that is $V_o = L^+$.

The electronic symbol for Schmitt trigger is shown below:

![Schmitt trigger symbol](image)

Generation of square wave using CMOS Schmitt trigger oscillator.

The Schmitt trigger can be used to generate a square wave by connecting it with an RC circuit in a feedback loop as shown in Figure#2. Observe that the Schmitt trigger is a CMOS inverting type connected in oscillator circuit that is it has no stable state and thus is appropriately named as an astable multivibrator.

The 40106 has V_{TH} and V_{TL} which vary with the supply voltage V_{DD}. V_{cap} will consist of alternating charging and discharging portion and V_o will be rectangular pulse wave form whose period and pulse duration depends on R, C, L^+, L^-, V_{TH} and V_{TL}.

$$T_{ch} = \tau \ln \left(\frac{L^+ - V_{TL}}{L^- - V_{TH}} \right)$$

$$T_{dch} = \tau \ln \left(\frac{V_{TH} - L^-}{V_{TL} - L^-} \right)$$

Where:

τ: is the time constant =RC.

V_{TL}, V_{TH}: The lower and upper threshold voltages

L^+, L^-: The upper and Lower saturation levels.

Transistor Sweep Generator

A sweep voltage wave form is one whose voltage starts from a baseline and increases at a uniform linear rate up to a peak amplitude, then rapidly returns to its baseline voltage, a sweep wave form is also referred to as saw tooth or time-base waveform.
Figure #3 shows a sweep wave form generator in which a pnp transistor is used to charge the capacitor and a npn transistor switch is used to discharge it. The pnp transistor is connected in common base configuration and it is used to operate in the active region. Assume the capacitor is initially discharged so the collector (C1) is at ground potential. Since the base is biased at V_{BB} above the ground, the C-B junction of Q_1 is reversed based with $V_{CB} = -V_{BB}$.

Objectives:

1. To demonstrate the characteristics of op-amp Schmitt trigger.
2. To generate square wave using Schmitt trigger.

Equipments and components:

- DMM, OSC, FG, PS
- CMOS Schmitt trigger 40106
- Op-Amp 741
- Transistors BJT NPN, PNP.
- Resistors: 10 kΩ, 6.8 kΩ, 4.7 kΩ, 2.2 kΩ, and 1kΩ.
- Capacitors: 0.1 nF, and 4.7 nF

Experimental Procedure:

I- Inverting Op-Amp Schmitt Trigger:

1. Design using Op-Amp an inverting Schmitt trigger having a hysteresis width equal to 1.8V. Use +11.5V bias supplies.
2. Apply a sine wave with frequency = 1 KHz at 5 V_{P-P} at the input terminal. Sketch the transfer characteristics.

3. Measure L+, L-, V_{TH}, V_{TL} for the transfer characteristics.

4. Change the value of bias supplies as given below and repeat step 3.

<table>
<thead>
<tr>
<th>V+</th>
<th>15</th>
<th>11.5</th>
<th>8</th>
<th>11.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-</td>
<td>-11.5</td>
<td>-15</td>
<td>-11.5</td>
<td>-8</td>
</tr>
</tbody>
</table>

II. Generation of Square wave using CMOS Schmitt trigger (40106).

1. Connect the circuit shown in Figure#2, use V_{DD} = 10V.

2. Sketch the waveform V_{cap} and V_{o}.

3. Measure T_{ch} and T_{dch} for V_{cap}. Calculate the Duty cycle.

4. Measure L+, L-, V_{TH} and V_{TL}.

![Figure#2](image-url)
III. Generation of sweep waveform.

1. Connect the circuit shown in Figure#3. Apply at the input a TTL wave of frequency 20 KHz and 0.2 Duty cycle.

2. Sketch V_O and V_{IN} at the same set of axis

3. Change the frequency to 200 Hz and note the effect on the output voltage