Position-only side lobe reduction of a uniformly excited elliptical antenna array using evolutionary algorithms

Ashraf Sharaqa, Nihad Dib

Department of Electrical Engineering, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110, Jordan
E-mail: nihad@just.edu.jo

Abstract: This study deals with the design of elliptical antenna arrays for specific radiation property using three different evolutionary algorithms; namely, self-adaptive differential evolution method, biogeography based optimisation method and firefly algorithm. These methods are used to determine an optimum set of positions for uniformly excited elliptical antenna array (EAA) that provides a radiation pattern with optimum side lobe level reduction with the constraint of a fixed major lobe beamwidth. Three examples are investigated; 8, 12 and 20 elements EAAs using these evolutionary algorithms. The comparison shows that the design of non-uniform EAAs using evolutionary algorithms presents a good side lobe reduction in the radiation pattern for the optimised design. Furthermore, the BBO method shows somewhat better performance compared with the other two methods.

1 Introduction

Antenna arrays play an important role in modern wireless applications, such as radio, TV, mobile, radar and satellite [1]. With the wireless communications revolution, antenna engineers are faced with more challenges. More requirements, such as radiation pattern shaping, low profile, wideband/narrowband devices, interference cancellation, matching networks, and more limitations such as power dissipation and antenna size, lead to the urgent need for simple, time-saving and efficient numerical techniques. Hence, optimisation techniques have recently taken a big effort in many electromagnetics and antenna synthesis problems where they specify the system design accuracy and reliability.

In this context, evolutionary algorithms, which are essentially search and optimisation techniques, have been successfully used in single- and multi-objective optimisation problems with many constraints. Recently, several evolutionary optimisation techniques: such as genetic algorithm (GA), particle-swarm optimisers (PSO), central force optimisation (CFO), differential evolution (DE), ant colony optimisation (ACO), Taguchi method, Biogeography-based optimisation (BBO) and firefly algorithm (FA) have been successfully used in electromagnetics because of their simplicity and robustness [2–11]. One of the common features of evolutionary algorithms is the existence of some parameters to be adjusted. One cannot solve a problem efficiently without adjusting their parameters properly. Proper parameters are different in each problem, and finding these proper parameters usually involves trial and error in most of the optimisation techniques.

Nowadays, antenna arrays are widely used in wireless communications rather than a single antenna. With the use of several antennas working together (array), it is possible to improve the radiation according to some specifications. The antenna array is important in the field of wireless communications because it improves the transmission and reception patterns of antennas used in communications systems. An array enables the beams of the antenna system to be electronically steered to transmit or receive information from a specific direction without mechanically moving the antenna. Antenna arrays can take any shape such as linear, elliptical, circular, planar, … etc.

Among the different types of antenna arrays, elliptical antenna array (EAA) [12–14] and circular antenna arrays (CAA) [15–19] have become more popular in mobile and wireless communications. In contrast to linear antenna arrays, the radiation patterns of EAAs and CAAAs inherently cover the entire space; the main lobe could be oriented in any desired direction. For the design of these arrays, one has to adequately choose the number of antennas in the array, their positions along the circumference, the semi major axis (the circle’s radius in the case of CAAAs), the ellipse eccentricity and the feeding currents (amplitudes and phases) of the antenna elements. In general, the elliptical and circular array optimisation problems are more complicated than the linear array optimisation. Through this paper, EAAs will be designed with the objective of minimising the side lobe level (SLL) with the constraint of a fixed major lobe beamwidth, using three different optimisation methods namely, the self-adaptive differential evolution (SADE) technique, BBO method and FA. To our knowledge, these techniques have not been applied on the optimal design of EAAs before.
The rest of this paper is organised as follows: in Section 2, the used optimisation techniques are briefly described and in Section 3 the geometry and the array factor for EAAs are presented. Then, in Section 4, the fitness function is given. Based on these models, in Section 5, numerical results and comparisons are shown. Finally, the paper is concluded in Section 6.

2 Evolutionary algorithms

2.1 SADE

DE was introduced by Kenneth Price and Rainer Storn in 1995 [20]. It is a simple metaheuristic and stochastic population-based evolutionary algorithm for global optimisation problems. DE is a small and simple mathematical model of a big and naturally complex process of evolution. However, when such algorithms are used, one faces the problem of setting their control parameters. The efficiency and the reliability of many algorithms are strongly dependent on the values of these control parameters. A user is supposed to be able to change the parameter values according to the results of trial-and-error preliminary experiments with the search process. Such attempts are not acceptable in tasks when the user has no experience in the art of control-parameter tuning. That is why the SADE was proposed in which the setting of the control parameters is made adaptive through the implementation of a competition into the DE algorithm [21, 22]. The DE has become one of the most popular algorithms for the continuous global optimisation problems and has been used in many practical cases as it has good convergence properties [20, 23].

Let the decision space (DS) be the N_p-dimensional decision search space such that $DS \subseteq R_{N_p}$. DE [20] evolves a population of N_p individuals of N_d-dimensional vectors (i.e. solution candidates, $R^p = (r_{i1}^p, r_{i2}^p, \ldots, r_{iN_d}^p)$) in DS, where the solution or individuals index $i = (1, \ldots, N_p)$, from one generation to the next). The initial population is distributed randomly such that it should ideally cover the entire search space by randomly distributing the ith space dimension (i.e. parameter) of each individual vector with a uniform distribution between the prescribed maximum and minimum bounds $r_{i\text{max}}^p$ and $r_{i\text{min}}^p$, where $i = 1, \ldots, N_d$. At each generation t, DE employs the mutation and crossover operations to produce a trial vector U^p_i for each individual vector R^p_i. It is also called the target vector in the current population [20].

In [21, 22], a novel approach was proposed for the self-adapting DE control parameters. The strategy was based on DE/rand/1/bin scheme. Each vector was extended with its own differentiation factor (F) and crossover constant (CR) values. Therefore, the control parameters were self-adjusted in every generation for each individual according to the following scheme

$$F_{i,G+1} = \begin{cases} F_i + \text{rand}_1 \times F_u, & \text{if } \text{rand}_1 < 0.1 \\ F_i, & \text{otherwise} \end{cases}$$

(1)

$$\text{CR}_{i,G+1} = \begin{cases} \text{rand}_3, & \text{if } \text{rand}_4 < 0.1 \\ \text{CR}_i, & \text{otherwise} \end{cases}$$

(2)

where $i = 1, \ldots, N_d$ and G is the generation number. rand$_1$, rand$_2$, rand$_3$ and rand$_4$, which are generated using the rand function in Matlab, are random numbers $\in [0, 1]$ and F_i, F_u are the lower and the upper limits of F set to 0.1 and 0.9, respectively [22]. So, by using the self-adaptive algorithm, the user does not have to adjust the F and CR parameters, while the time complexity does not increase.

In this paper, the DE with competitive control-parameter setting technique [22] is used, in which the setting of the control parameters is made adaptive through an implementation of a competition into the DE algorithm.

2.2 BBO

Biogeography is the science specialising in studying the geographical distribution of living organisms. During the early 19th century, the basics of biogeography science were written by Alfred Wallace [24] and Charles Darwin [25]. This science remained descriptive until Robert MacArthur and Edward Wilson, in 1967, presented mathematical models of biogeography called The Theory of Island Biogeography [26] which is focused on the nature’s way of species distribution. BBO, which was developed by Dan Simon [27], is similar to artificial neural network (ANN) [28] and GA [29], which are dependent on biological neurons and biological genetics, respectively. Mathematical models of BBO are based on the extinction and migration of species between neighbouring islands. An island is any habitat (area) that is geographically isolated from other habitats. Islands that are more suitable for habitation than others are said to have a high habitat suitability index (HSI). HSI is considered as a dependent variable, because it is correlated to many factors such as rainfall, temperature and diversity of vegetation and topography, etc. Another interesting variable is called the suitability index variable (SIV), which characterises habitability. It is an independent variable of the habitat.

Suppose that one is faced with a global optimisation problem and some candidate solutions. The candidate solutions of a problem are represented by an array of integers as $\text{Habitat} = \{\text{SIV}_1, \text{SIV}_2, \text{SIV}_3, \ldots, \text{SIV}_N\}$. The value of the fitness function in BBO is called HSI, which is found by evaluating the fitness function

$$\text{fitness(\text{Habitat})} = \text{HSI} = f(\text{SIV}_1, \text{SIV}_2, \text{SIV}_3, \ldots, \text{SIV}_N)$$

(3)

The migration process has two types: they are emigration and immigration. Whereas migration means moving species from habitat to habitat, emigration is the process of leaving species the habitat to somewhere and immigration means the process of incoming species to this habitat from somewhere. A habitat with large number of species is characterised as follows: it has a high HSI, high emigration rate, low immigration rate and considered as more stable because it shall be almost filled with species. All these characteristics are vice versa for a habitat with less number of species. Species immigrating to low HSI habitats may increase the HSI of the habitat, because of the relationship between biological diversity of a habitat and its suitability. However, if the suitability index stays low then species that immigrate will incline to go extinct. The BBO algorithm consists of three steps: creating a set of solutions to the problem, where they are randomly selected, and then applying migration and mutation steps to reach the optimal solution.

doi: 10.1049/iet-map.2012.0541

© The Institution of Engineering and Technology 2013
2.3 FA

FA is a new nature-inspired algorithm developed by Yang [30, 31]. Several well-known optimisation techniques: such as invasive weed optimisation (IWO) [32], ant colony optimisation (ACO) [33], PSO [34] and recently FA mimic insect behaviour in problem modelling and solution. FA is based on the flashing light of fireflies, which is produced by a process of bioluminescence. The objectives of flashing system in fireflies are to attract marrying partners or potential victim, and to give a warning sign. The attractive process between fireflies is based on their light intensity where fireflies move toward the brightest ones. FA employs this swarm behaviour in optimisation problem where the light intensity and location of firefly correspond to the fitness value and a set of solutions to the optimised problem.

FA can be summarised and described as follows:

(I) – Create a set of solutions (location of n-fireflies in the \(d\)-dimensional search space) to the problem, where they are randomly selected within the search bound

\[
x_i = (x_{i1}, x_{i2}, \ldots, x_{id}), \quad \text{for } i = 1, 2, \ldots, n
\]

(4)

(II) – Calculate the fitness function \(f(x_i)\) (intensity \(I_i\)) of each solution (each firefly position) and sort the population from best (brightest) to worst (bright). For minimisation problem

\[
I_i \propto \{f(x_i)\}^{-1}
\]

(5)

(III) – Update fireflies’ locations depending upon the attractiveness between the brighter one and the moving firefly, where fireflies \(i\) (low intensity) are attracted towards other fireflies \(j\) that are more brighter (highest intensity) using the following formula

\[
x_i = x_i + \beta_o e^{-\gamma x_i} (x_j - x_i) + \alpha (\text{rand} - 0.5)
\]

(6)

\[
r_{ij} = |x_i - x_j| = \left(\sum_{k=1}^{d} (x_{ik} - x_{jk})^2 \right)^{0.5}
\]

(7)

For more details about the above three optimisation techniques, the reader can consult the references cited above.

3 Geometry and array factor of elliptical antenna array

The geometry of an EAA whose \(N\) isotropic antenna elements lie on an ellipse placed in the \(x-y\) plane (\(\theta = 90^\circ\)) is shown in Fig. 1. The origin is considered to be the centre of an ellipse. In free space, the array factor for this elliptical array is given by [13, 14] (see (8)) where

\[
k = \frac{2\pi}{\lambda}
\]

(9)

\[
AF(\theta, \varnothing) = \sum_{n=1}^{N} I_n \exp\{ k \sin(\theta) (a \cos(\varnothing_n) \cos(\theta) + b \sin(\varnothing_n) \sin(\theta)) + \alpha_n\}
\]

(8)

In the above equations, \(I_n\) and \(\alpha_n\) represent the excitation amplitude and phase of the \(n\)th element. \(\varnothing_n\) is the angular position of the \(n\)th element in the \(x-y\) plane, \(\varnothing\) is the azimuth angle measured from the positive \(x\)-axis, \(\theta\) is the elevation angle measured from the positive \(z\)-axis (in our examples, the array factor in the \(x-y\) plane, that is, \(\theta = 90^\circ\), is considered). Moreover, \(a\) and \(b\) are, respectively, the semi-major axis and semi-minor axis lengths. It should be mentioned here that the circular antenna array is a special case of an EAA when the eccentricity \(e\) equals to zero. The value of \(e\) is given as follows

\[
e = \sqrt{1 - \frac{b^2}{a^2}}
\]

(10)

To direct the peak of the main beam in the \((\theta_o, \varnothing_o)\) direction, the excitation phase is chosen to be [1]

\[
\alpha_n = - k \sin(\theta_o) (a \cos(\varnothing_n) \cos(\varnothing_o) + b \sin(\varnothing_n) \sin(\varnothing_o))
\]

(11)

In our design problems, \(\theta_o\) and \(\varnothing_o\) are chosen to be \(90^\circ\) and \(0^\circ\), respectively, that is, the peak of the main beam is directed along the positive \(x\)-axis. The ellipse eccentricity is fixed in all elliptical array examples \((e = 0.5)\). \(a\) is chosen depending on the number of elements. Here, it is chosen as \(0.5\lambda\), \(1.15\lambda\) and \(1.6\lambda\) for 8, 12 and 20 elements EAA's, respectively. These values, which are found by several trial runs, provide maximum reduction in the SLL.

4 Fitness function

In antenna array problems, there are many parameters that can be used to evaluate the fitness (or cost) function such as gain, SLL, radiation pattern and size. Here, the goal is to design arrays with minimum side lobe levels for a specific first null beamwidth (FNBW). Thus, the following fitness function is
used

\[
\text{Fitness} = \left(W_1 F_1 + W_2 F_2 \right) / |\text{AF}_{\text{max}}|^2
\] (12)

\[
F_1 = |\text{AF}(\phi_{\text{nu1}})|^2 + |\text{AF}(\phi_{\text{nu2}})|^2
\] (13)

\[
F_2 = \max \left\{ |\text{AF}(\phi_{\text{ms1}})|^2, |\text{AF}(\phi_{\text{ms2}})|^2 \right\}
\] (14)

where \(\phi_{\text{nu}} \) is the angle at a null. Here, the array factor is minimised at the two angles \(\phi_{\text{nu1}} \) and \(\phi_{\text{nu2}} \) defining the major lobe, that is, an FNBW = \(\phi_{\text{nu2}} - \phi_{\text{nu1}} = 2\phi_{\text{nu1}} \). \(\phi_{\text{ms1}} \) and \(\phi_{\text{ms2}} \) are angles where the maximum SLL is attained during the optimisation process in the lower band (from \(-180^\circ\) to \(\phi_{\text{nu1}}\)) and the upper band (from \(\phi_{\text{nu2}}\) to \(180^\circ\)), respectively. An increment of \(1^\circ\) is used in the optimisation process. Thus, the function \(F_2 \) minimises the maximum SLL around the major lobe.

Moreover, \(\text{AF}_{\text{max}} \) is the maximum value of the array factor, that is, its value at \((\theta_n, \phi_o)\). \(W_1 \) and \(W_2 \) are weighting factors, which are chosen here to be unity. It should be mentioned that since the gradient of an AF is, as a rule, not small at the nulls, we use (13) instead of, for instance, squared distortion of a specified FNBW. Thus, for the design of an EAA with minimum SLL, the optimisation problem is to search for the element positions \((\phi_{\text{s}}) \) that minimise the maximum SLL with the constraint of a fixed major lobe beamwidth for uniformly excited EAA, that is, \(\theta_n \)'s are assumed to be unity.

5 Numerical results and comparisons

5.1 Example 1: 8 elements EAA

Using the equation of fitness function associated with the array factor for eight elements EAA, the three optimisation codes are run for 20 independent times. The control parameters of each technique were tuned by trial until the best solutions were obtained. Table 1 and Fig. 2 show the best obtained optimum positions and the obtained radiation patterns. The best SLL, which is obtained using BBO, is \(-19.763 \text{ dB}\), whereas the maximum SLL obtained using the SADE and FA are \(-19.12\) and \(-19.43 \text{ dB}\), respectively. It is worth mentioning that a uniform EAA with the same parameters of each technique were tuned by trial until the best obtained optimum positions and the obtained radiation patterns. The best SLL, which is obtained using BBO, is \(-19.763 \text{ dB}\), whereas the maximum SLL obtained using the SADE and FA are \(-19.12\) and \(-19.43 \text{ dB}\), respectively. It is worth mentioning that a uniform EAA with the same parameters of each technique were tuned by trial until the best obtained optimum positions and the obtained radiation patterns.

<table>
<thead>
<tr>
<th>(N = 8)</th>
<th>(\theta_{\text{nu2}} = 51^\circ)</th>
<th>(\phi_{\text{nu1}}, \phi_{\text{nu2}}, \ldots, \phi_{\text{ns}}) in degrees</th>
<th>Max SLL, dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SADE</td>
<td>[33.18, 53.49, 130.78, 150.20, 209.64, 230.74, 305.92, 333.58]</td>
<td>–19.124</td>
<td></td>
</tr>
<tr>
<td>BBO</td>
<td>[33.95, 51.90, 127.37, 145.91, 206.57, 233.52, 305.95, 331.42]</td>
<td>–19.763</td>
<td></td>
</tr>
<tr>
<td>uniform</td>
<td>[0, 45, 90, 135, 180, 225, 270, 315]</td>
<td>–8.02</td>
<td></td>
</tr>
</tbody>
</table>

5.2 Example 2: 12 elements EAA

In the second example, a 12-element EAA is optimised. Table 2 shows the SADE, BBO and FA results for 12 elements EAA, whereas Fig. 2 shows a comparison between the array factors obtained using the different optimisation methods as compared with a uniform array. The maximum SLL obtained

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{N = 12} & \(\phi_{\text{nu1}}, \phi_{\text{nu2}}, \ldots, \phi_{\text{ns}} \) in degrees & \textbf{Max SLL, dB} \\
\hline
BBO & [25.25, 49.84, 90.87, 121.82, 155.25, 179.38, 204.15, 235.15, 271.03, 310.91, 336.84, 359.41] & –9.762 \\
FA & [0.15, 24.20, 48.19, 87.97, 127.67, 156.54, 181.47, 206.66, 240.97, 273.94, 310.98, 336.81] & –9.966 \\
uniform & [0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330] & –3.60 \\
\hline
\end{tabular}
\end{table}

5.3 Example 3: 20 elements EAA

Similar to the previous examples, Table 3 shows the optimum results for 20 elements EAA, whereas Fig. 3 shows a

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{N = 20} & \(\phi_{\text{nu1}}, \phi_{\text{nu2}}, \ldots, \phi_{\text{ns}} \) in degrees & \textbf{Max SLL, dB} \\
\hline
SADE & [157.57, 180.10, 196.06, 203.53, 254.08, 266.70, 327.94, 349.25] & –10.372 \\
BBO & [25.25, 49.84, 90.87, 121.82, 155.25, 179.38, 204.15, 235.15, 271.03, 310.91, 336.84, 359.41] & –9.762 \\
FA & [0.15, 24.20, 48.19, 87.97, 127.67, 156.54, 181.47, 206.66, 240.97, 273.94, 310.98, 336.81] & –9.966 \\
uniform & [0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330] & –3.60 \\
\hline
\end{tabular}
\end{table}
comparison between the array factors obtained using the different optimisation methods as compared with a uniform array. The maximum SLLs obtained using the SADE, BBO and FA methods are -11.22, -11.02 and -11.27 dB, respectively. It can be noted that both the SADE and FA give slightly better SLLs than the BBO method.

5.4 Comparisons

Tables 4 and 5 show a comparison between the used optimisation techniques with respect to the simulation time and the total number of function evaluations. The number of function evaluations is computed based on the population size and the maximum number of generation, which are set by tuning until the optimal SLL is obtained.

It can be seen from Table 5 that, for eight-element EAA, the number of function evaluations of the BBO is about

![Fig. 4](image)

Radiation pattern for the optimised $N = 20$ EAA

Table 3 Positions for the optimised $N = 20$ EAA

<table>
<thead>
<tr>
<th>$N = 20$</th>
<th>$\phi_{nu2} = 16^\circ$</th>
<th>Max SLL, dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SADE</td>
<td>[0.057, 18.00, 38.74, 68.89, 86.32, 93.87, 110.80, 140.92, 161.99, 179.62, 180.06, 198.00, 216.00, 248.96, 267.47, 273.53, 290.71, 323.67, 341.99, 359.15]</td>
<td>-11.225</td>
</tr>
<tr>
<td>BBO</td>
<td>[2.80, 18.03, 38.06, 71.99, 84.08, 92.73, 108.96, 140.55, 161.82, 178.23, 181.78, 198.07, 219.26, 248.84, 266.82, 271.33, 292.57, 323.54, 341.53, 359.07]</td>
<td>-11.020</td>
</tr>
<tr>
<td>FA</td>
<td>[0.77, 18.00, 37.25, 68.33, 88.66, 93.51, 113.53, 143.96, 162.00, 179.98, 180.63, 198.00, 216.99, 248.14, 264.62, 273.40, 289.05, 321.28, 342.00, 358.30]</td>
<td>-11.272</td>
</tr>
<tr>
<td>uniform</td>
<td>[0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, 198, 216, 234, 252, 270, 288, 306, 324, 342]</td>
<td>-7.17</td>
</tr>
</tbody>
</table>

![Table 4](image)

Table 4 Comparison between the simulation time for the optimisation techniques (units: s)

<table>
<thead>
<tr>
<th>Number of elements</th>
<th>SADE</th>
<th>BBO</th>
<th>FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>82.1727</td>
<td>43.9015</td>
<td>175.1540</td>
</tr>
<tr>
<td>12</td>
<td>145.8874</td>
<td>196.5913</td>
<td>268.0191</td>
</tr>
<tr>
<td>20</td>
<td>541.6746</td>
<td>287.9012</td>
<td>510.5234</td>
</tr>
</tbody>
</table>

![Table 5](image)

Table 5 Comparison between the total numbers of function evaluations required by the optimisation techniques

<table>
<thead>
<tr>
<th>Number of elements</th>
<th>Number of generations</th>
<th>Population size</th>
<th>SADE</th>
<th>BBO</th>
<th>FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>50</td>
<td>50</td>
<td>500</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>250</td>
<td>40</td>
<td>1500</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>20</td>
<td>700</td>
<td>40</td>
<td>3000</td>
<td>8000</td>
<td>8000</td>
</tr>
</tbody>
</table>
46.87 and 25% of that needed by the SADE and FA, respectively. While for 12-elements EAA, the number of function evaluation used by the FA is 166.66 and 288.46% greater than that of needed by SADE and BBO, respectively. Finally, for 20-element EAA, SADE and FA have the same number of function evaluations to reach the best values that is 375% greater than that of needed by BBO. In all of the above-mentioned comparisons, the BBO showed better performance in terms of computation cost (i.e. number of function evaluations and simulation time).

6 Conclusions

In this paper, for the first time, the evolutionary algorithms: SADE, BBO and FA were used to adjust the elements positions, which were uniformly excited, in an EAA. Three examples were investigated: 8, 12 and 20-element EAs. The design objective was to provide a radiation pattern with a major lobe beamwidth. The obtained optimised array factor and the performance of evolutionary algorithms were compared. The comparison showed that the design of non-uniform EAs using evolutionary algorithms presents a good side lobe reduction in the radiation pattern for the optimised design. It has been found that BBO is the most efficient among the investigated methods (for the problem under consideration).

7 Acknowledgment

This work was supported by the Deanship of Research at Jordan University of Science and Technology (JUST).

8 References

6 Tenglong, K., Xiaoying, Z., Jian, W., Yihan, D.: ‘A modified ACO algorithm for the optimization of antenna layout’, Int. Conf. on Electrical and Control Engineering (ICECE), September 2011, pp. 4269–4272