Create a Simple GUIDE GUI

This example shows how to create a simple GUIDE graphical user interface (GUI), such as shown in the following figure.

![A Simple GUI](image)

Subsequent topics guide you through the process of creating this GUI.

If you prefer to view and run the code that created this GUI without creating it, set your current folder to one to which you have write access. Copy the example code and open it in the Editor by issuing the following MATLAB® commands:

```matlab
copyfile(fullfile(docroot, 'techdoc','creating_guis',...'
  'examples','simple_gui*.*')),'fileattrib('simple_gui*.*', '+w');
guide simple_gui.fig;
edit simple_gui.m
```

To run the GUI, on the Editor tab, in the Run section, click Run ➤.

Open a New GUI in the GUIDE Layout Editor

1. Start GUIDE by typing `guide` at the MATLAB prompt.
2. In the GUIDE Quick Start dialog box, select the **Blank GUI (Default)** template, and then click **OK**.

3. Display the names of the GUI components in the component palette:
 a. Select **File > Preferences > GUIDE**.
 b. Select **Show names in component palette**.
 c. Click **OK**.
Set the GUI Figure Size in GUIDE
Set the size of the GUI by resizing the grid area in the Layout Editor. Click the lower-right corner and drag it until the GUI is approximately 3 in. high and 4 in. wide. If necessary, make the window larger.

Layout the Simple GUIDE GUI
Add, align, and label the components in the GUI.

1. Add the three push buttons to the GUI. Select the push button tool from the component palette at the
left side of the Layout Editor and drag it into the layout area. Create three buttons, positioning them approximately as shown in the following figure.

2. Add the remaining components to the GUI.
 - A static text area
 - A pop-up menu
 - An axes

 Arrange the components as shown in the following figure. Resize the axes component to approximately 2-by-2 inches.

 Align the Components

 If several components have the same parent, you can use the Alignment Tool to align them to one another.

To align the three push buttons:

1. Select all three push buttons by pressing Ctrl and clicking them.
2. Select Tools > Align Objects.
3. Make these settings in the Alignment Tool:
 - Left-aligned in the horizontal direction.
 - 20 pixels spacing between push buttons in the vertical direction.

4. Click OK.

Label the Push Buttons

Each of the three push buttons specifies a plot type: surf, mesh, and contour. This topic shows you how to
label the buttons with those options.

1. Select **View > Property Inspector**.

![Property Inspector](image1)

2. In the layout area, click the top push button.

![Push Button](image2)

3. In the Property Inspector, select the **String** property, and then replace the existing value with the word **Surf**.

![Push Button with Surf](image3)

4. Click outside the **String** field. The push button label changes to **Surf**.

![Push Button with Surf](image4)

5. Click each of the remaining push buttons in turn and repeat steps 3 and 4. Label the middle push button **Mesh**, and the bottom button **Contour**.

List Pop-Up Menu Items

The pop-up menu provides a choice of three data sets: peaks, membrane, and sinc. These data sets correspond to MATLAB functions of the same name. This topic shows you how to list those data sets as choices in the pop-menu.

![List Pop-Up Menu Items](image5)
1. In the layout area, click the pop-up menu.

2. In the Property Inspector, click the button next to String. The String dialog box displays.

3. Replace the existing text with the names of the three data sets: Peaks, Membrane, and Sinc. Press Enter to move to the next line.

4. When you finish editing the items, click OK. The first item in your list, Peaks, appears in the pop-up menu in the layout area.

Modify the Static Text

In this GUI, the static text serves as a label for the pop-up menu. This topic shows you how to change the static text to read Select Data.

1. In the layout area, click the static text.

2. In the Property Inspector, click the button next to String. In the String dialog box that displays, replace the existing text with the phrase Select Data.
3. Click **OK**.

The phrase **Select Data** appears in the static text component above the pop-up menu.

Save the GUI Layout

When you save a GUI, GUIDE creates two files, a FIG-file and a code file. The FIG-file, with extension `.fig`, is a binary file that contains a description of the layout. The code file, with extension `.m`, contains MATLAB functions that control the GUI behavior.

1. Save and activate your GUI by selecting **Tools > Run**.
2. GUIDE displays a dialog box displaying: "Activating will save changes to your figure file and MATLAB code. Do you wish to continue?"

 Click **Yes**.

3. GUIDE opens a **Save As** dialog box in your current folder and prompts you for a FIG-file name.
4. Browse to any folder for which you have write privileges, and then enter the file name `simple_gui` for the FIG-file. GUIDE saves both the FIG-file and the code file using this name.
5. If the folder in which you save the GUI is not on the MATLAB path, GUIDE opens a dialog box, giving you the option of changing the current folder to the folder containing the GUI files, or adding that folder to the top or bottom of the MATLAB path.
6. GUIDE saves the files `simple_gui.fig` and `simple_gui.m`, and then activates the GUI. It also opens the GUI code file in your default editor.

 The GUI opens in a new window. Notice that the GUI lacks the standard menu bar and toolbar that MATLAB figure windows display. You can add your own menus and toolbar buttons with GUIDE, but by default a GUIDE GUI includes none of these components.

 When you run `simple_gui`, you can select a data set in the pop-up menu and click the push buttons, but nothing happens. This is because the code file contains no statements to service the pop-up menu and the buttons.
To run a GUI created with GUIDE without opening GUIDE, execute its code file by typing its name.

```
simple_gui
```

You can also use the `run` command with the code file, for example,

```
run simple_gui
```

Note: Do not attempt to run a GUIDE GUI by opening its FIG-file outside of GUIDE. If you do so, the figure opens and appears ready to use, but the GUI does not initialize and its callbacks do not function.

Code the Simple GUIDE GUI Behavior

When you saved your GUI in the previous topic, **Save the GUI Layout**, GUIDE created two files: a FIG-file `simple_gui.fig` that contains the GUI layout and a file, `simple_gui.m`, that contains the code that controls how the GUI behaves. The code consists of a set of MATLAB functions (that is, it is not a script). But the GUI did not respond because the functions contain no statements that perform actions yet. This topic shows you how to add code to the file to make the GUI do things.

Generate Data to Plot

This topic shows you how to generate the data to be plotted when the GUI user clicks a button. The *opening function* generates this data by calling MATLAB functions. The opening function, which initializes a GUI when it opens, is the first callback in every GUIDE-generated GUI code file.

In this example, you add code that creates three data sets to the opening function. The code uses the MATLAB functions `peaks`, `membrane`, and `sinc`.

1. Display the opening function in the MATLAB Editor.

 If the file `simple_gui.m` is not already open in the editor, open from the Layout Editor by selecting **View > Editor**.
2. On the **EDITOR** tab, in the **NAVIGATE** section, click **Go To**, and then select **simple_gui_OpeningFcn**.
 The cursor moves to the opening function, which contains this code:

   ```matlab
   % --- Executes just before simple_gui is made visible.
   function simple_gui_OpeningFcn(hObject, eventdata, handles, varargin)
   % This function has no output args, see OutputFcn.
   % hObject    handle to figure
   % eventdata  reserved - to be defined in a future version of MATLAB
   % handles    structure with handles and user data (see GUIDATA)
   % varargin   command line arguments to simple_gui (see VARARGIN)
   
   % Choose default command line output for simple_gui
   handles.output = hObject;
   
   % Update handles structure
   guidata(hObject, handles);
   
   % UIWAIT makes simple_gui wait for user response (see UIRESUME)
   % uiwait(handles.figure1);
   ```

3. Create data for the GUI to plot by adding the following code to the opening function immediately after the comment that begins `% varargin...`

   ```matlab
   % Create the data to plot.
   handles.peaks=peaks(35);
   handles.membrane=membrane;
   [x,y] = meshgrid(-8:.5:8);
   r = sqrt(x.^2+y.^2) + eps;
   sinc = sin(r)./r;
   handles.sinc = sinc;
   
   % Set the current data value.
   handles.current_data = handles.peaks;
   surf(handles.current_data = handles.peaks;
   surf(handles.current_data)
   ```

The first six executable lines create the data using the MATLAB functions `peaks`, `membrane`, and `sinc`. They store the data in the `handles` structure, an argument provided to all callbacks. Callbacks for the push buttons can retrieve the data from the `handles` structure.

The last two lines create a current data value and set it to peaks, and then display the surf plot for peaks. The following figure shows how the GUI now looks when it first displays.
Code Pop-Up Menu Behavior

The pop-up menu presents options for plotting the data. When the GUI user selects one of the three plots, MATLAB software sets the pop-up menu `value` property to the index of the selected string. The pop-up menu callback reads the pop-up menu `value` property to determine the item that the menu currently displays, and sets `handles.current_data` accordingly.

1. Display the pop-up menu callback in the MATLAB Editor. In the GUIDE Layout Editor, right-click the pop-up menu component, and then select **View Callbacks > Callback**.
GUIDE displays the GUI code file in the Editor, and moves the cursor to the pop-menu callback, which contains this code:

```matlab
% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject    handle to popupmenu1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
str = get(hObject, 'String');
val = get(hObject,'Value');
switch str{val};
case 'Peaks' % User selects peaks.
    handles.current_data = handles.peaks;
end
```

2. Add the following code to the `popupmenu1_Callback` after the comment that begins `% handles...`

This code first retrieves two pop-up menu properties:

- **String** — a cell array that contains the menu contents
- **Value** — the index into the menu contents of the selected data set

The code then uses a `switch` statement to make the selected data set the current data. The last statement saves the changes to the `handles` structure.

```matlab
% Determine the selected data set.
str = get(hObject, 'String');
val = get(hObject,'Value');
% Set current data to the selected data set.
switch str{val};
case 'Peaks' % User selects peaks.
    handles.current_data = handles.peaks;
end
```
case 'Membrane' % User selects membrane.
 handles.current_data = handles.membrane;
end

% Save the handles structure.
guidata(hObject,handles)

Code Push Button Behavior

Each of the push buttons creates a different type of plot using the data specified by the current selection in the pop-up menu. The push button callbacks get data from the handles structure and then plot it.

1. Display the Surf push button callback in the MATLAB Editor. In the Layout Editor, right-click the Surf push button, and then select View Callbacks > Callback.

In the Editor, the cursor moves to the Surf push button callback in the GUI code file, which contains this code:

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
 % hObject handle to pushbutton1 (see GCBO)
 % eventdata reserved - to be defined in a future version of MATLAB
 % handles structure with handles and user data (see GUIDATA)

2. Add the following code to the callback immediately after the comment that begins % handles...

 % Display surf plot of the currently selected data.
surf(handles.current_data);

3. Repeat steps 1 and 2 to add similar code to the **Mesh** and **Contour** push button callbacks.
 - Add this code to the **Mesh** push button callback, `pushbutton2_Callback`:
     ```matlab
     % Display mesh plot of the currently selected data.
     mesh(handles.current_data);
     ```
 - Add this code to the **Contour** push button callback, `pushbutton3_Callback`:
     ```matlab
     % Display contour plot of the currently selected data.
     contour(handles.current_data);
     ```

4. Save your code by selecting **File > Save.**

Open and Run the Simple GUIDE GUI

In **Code the Simple GUIDE GUI Behavior**, you programmed the pop-up menu and the push buttons. You also created data for them to use and initialized the display. Now you can run your GUI and see how it works.

1. Run your GUI from the Layout Editor by selecting **Tools > Run.**

2. In the pop-up menu, select **Membrane**, and then click the **Mesh** button. The GUI displays a mesh plot of the MathWorks® L-shaped Membrane logo.

3. Try other combinations before closing the GUI.