Lecture-3
water, sodium and potassium homeostasis

Dr. Khalid Al-Ani
Department of Clinical Pharmacy
Faculty of Pharmacy

Water & sodium balance

- Internal and external balance
- Internal balance is the distribution between different body compartment
- External balance match input and output

Total body water (TBW) /70 kg adult

- \(42\text{ liter} = 60\%\) of body mass
- distributed in two compartments
 - \(2/3 (66\%) = 28\text{L}\) in the intracellular fluid compartment (ICF)
 - \(1/3 (33\%) = 14\text{L}\) in the extracellular fluid compartment (ECF)

Total body water (TBW) - distributed in two compartments. (conti)

- ECF
 - \(75\% (11\text{L})\) of ECF is interstitial fluid (ISF)
 - \(25\% (3\text{L})\) of ECF is intravascular (IVF) (plasma)
 - CSF is about 150 ml
Water is passively transported in the body, freely permeable through cell membranes (ICF and ECF).

Sodium is the major extracellular cation (95%)

- Total body sodium /70 kg adult 4200 mmol
 - 50% in ECF
 - 40% in bones
 - 10% ICF

The capillary endothelial is freely permeable to sodium

$[\text{Na}^+]$ of the ISF is equal to that of plasma

The capillary endothelial is only slightly permeable to plasma proteins

$[\text{protein}]$ of the ISF is $<<$ that of plasma
The capillary endothelial is only slightly permeable to plasma proteins. [protein] of the ISF is << that of plasma.

Movement of Body Fluids

- Water distribution between compartments is determined by:
 1. Osmolality - controls water distribution between ICF and ECF
 2. Colloid osmotic pressure - controls water distribution between IVF and ISF

Osmolality

- Osmolality is the number of dissolved particles (molecules and ions) per kg of solution
- Affect movement of water across cell membrane

Diffusion = net movement of particles (solute) down concentration gradient to establish equilibrium between two sides of membrane

Osmosis = diffusion of water from high concentration to low concentration
How can we calculate osmolality?

- Osm is equal to the sum of all molecules and ions cross cell membrane/unit wt

- The major contributor to ECF osmolality is Na, and other such as glc, urea and K:

 \[\text{Osm} = 2[Na^+] + 2[K^+] + [\text{glc}] + [\text{urea}] \]

 \[= 2 \times 135 + 2 \times 4 + 5 + 5 \]

 \[= 282-295 \text{ mmol/kg} \]

Osmal gap

- plasma protein or lipids

Tonicity

- # of solute particles in solution which can effect osmotic pressure (e.g. Na+),

- which means solutes which are not freely permeable though cell membrane, causes movement of water into and out of the cells

- Tonicity is not the same as Osmolality but often used interchangeably

- substances such as alcohol and urea does not contributes to tonicity since they are readily diffusible down concentration gradient and reach equilibrium

- Hypertonic -- high amount of solute

- Hypotonic = dilute

Colloid osmotic pressure exerted by plasma proteins across cell membrane
at arterial end of capillary, $CHP > COP$, so fluid moves out of the capillary.

at venous end of capillary, $COP > CHP$, so fluid moves from around cells; containing wastes and CO2 moves into capillary.

Regulation of external water balance:

- Water intake is variable, and largely depends on social habits.

- **Water intake = water output**

Average daily water output and intake:

- Minimum daily intake need for maintenance of water balance is **1100ml**

<table>
<thead>
<tr>
<th>Obligatory losses</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin 500</td>
<td>-diet and drunk 1100</td>
</tr>
<tr>
<td>Lungs 400</td>
<td>-oxidative</td>
</tr>
<tr>
<td>Gut 100</td>
<td>metabolism 400</td>
</tr>
<tr>
<td>Kidneys 500</td>
<td></td>
</tr>
</tbody>
</table>

1500 ml
Water intake is controlled by Sensation of thirst and output by anti-diuretic hormone (ADH)

Regulation of external water balance-cont

- Change body water change Osmolality (282-295)

- Loss of water from ECF increases Osmolality. This will cause
 - Movement of water from ICF → ECF
 - Stimulates hypothalamus thirst center which promotes the desire of drink
 - Stimulates ADH secretion

 Regulators of Vasopressin release

1. Osmotic control
 hypothalamic Osmoreceptor sensitive for small changes in osmolality as small as 1%
Regulators of Vasopressin release conti.

- Above a 282 mosmol/l the concentration of ADH increases.
- Below 282 mosmol/l ADH is undetectable in plasma.

2. Baroreceptor
Decreased blood volume/pressure stimulates the release of ADH.

Baroreceptor is less sensitive than the osmoreceptors; detect a 8–10% change in volume or pressure.

Factors affecting ADH secretion

<table>
<thead>
<tr>
<th>Stimulated by:</th>
<th>Inhibited by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>High osmolality</td>
<td>Low ECF</td>
</tr>
<tr>
<td>Low blood volume</td>
<td>Osmolality</td>
</tr>
<tr>
<td>Low blood pressure</td>
<td>Hi blood volume</td>
</tr>
<tr>
<td>Angiotensin II</td>
<td>Hi blood pressure</td>
</tr>
<tr>
<td>and volume receptor</td>
<td>Alcohol</td>
</tr>
<tr>
<td>stress including pain</td>
<td></td>
</tr>
</tbody>
</table>

Regulation of external sodium balance

Na input = Na output

- There is an obligatory loss for Na (10mmol/day)
 kidneys, (skin and GIT to less extent)
Sodium distribution (contd)

- There are massive internal turnover of Na:
 - GIT = 10mmole/day
 - kidney = 25000mmol/day

- In disease, GIT can be a major loss of Na+

Sodium and ECF volume

Serum normal range = 135-150 mmol/L

- Na is most important ion in regulating water balance

- [Na+] affects ECF osmolarity

- [Na+] affects blood pressure & ECF volume

Sodium balance is maintained by regulation of its renal excretion which affected by

1. The glomerular filtration rate (GFR)

- 70% of filtered Na+ is reabsorbed in the proximal tubules
- Less than 5% reach the distal tubules
1. Reduced GFR less Na\(^+\) is filtered and excreted and Vice versa

2. Renin Angiotensin system (II)

3. Atrial natriuretic peptide (ANP)
 - Works at kidney
Atrial natriuretic peptide (ANP)

- ANP is a 28 AA polypeptide secreted by right atrium in response to volume expansion, which causes stretching of the myocardium.

- ANP lowers blood volume and pressure—antagonize RAS.

- Two other structurally similar peptide has been identified (BNP) and (CNP).

Water Homeostasis
Two types of disorders:

- **Water depletion:**
 - Usually accompanied Na$^+$ depletion
 - Is due to decreased intake or increased loss --> Hyperosmolality

- **Water excess:**
 - Increased intake or decreased loss --> Hypoosmolality

Water and Na$^+$ depletion

- Losses are > than intake.

- Pure water depletion is less common (may occur in DI and from lung).

- Na$^+$ can’t excreted with out water.
Water depletion (hypovolemia)

Clinical feature
Fluid lost from blood vessels, leads to decreased ECF volume

Signs
- Decr’d urine output
- Weight loss (through fluid weight)
- Can leads to hypovolemic shock

Symptoms of hypovolemia
- Thirst, dryness of the mouth
- Decr’d blood pressure
- Increased heart rate

Causes of water depletion

Decreased intake
Infancy, old age, unconsciousness, dysphagia

Increased loss
- From kidney
 - Diabetes insipidus
 - Increased osmotic load (DM)
 - Osmotic diuretics
- From skin
- From lungs
- From gut
 - Diarrhea – in infant
Which one is more dangerous, the losses of pure water of isotonic fluid?

Water excess (hypervolemia)
- Usually occur due to impaired water excretion
- Healthy Kidney can excrete 20ml/min
- Causes cerebral over-hydration
- Hyponatraemia is invariable present

Water excess (hypervolemia) conti
- Clinical feature
 - With incr’ed ECF volume
 - Weight gain (fluid weight)
 - Diluted urine
 - Increased blood pressure
 - Can also edema
 - Confusion and headache

Causes of water excess
- Increased intake
 - Compulsive water drinking
 - Excessive IV fluids
Causes of water excess

- Decreased excretion
 - Renal failure
 - Inappropriate or ectopic secretion of vasopressin (SIADH)
 - Some drugs (e.g. cortisol)

SIADH

= syndrome of inappropriate ADH secretion
- Prevents urinary excretion of water
- Results in a state of water excess:
 - Low plasma osmolality; low plasma Na+
 - High urine osmolality
 - No edema
 - Normal renal and adrenal function

Major Causes of SIADH

- Tumor - ectopic production of ADH
 - Carcinoma of the lung
 - Prostate & pancreas
- Inappropriate secretion
 - Pulmonary diseases
 - Pneumonia
 - Tuberculosis

Major Causes of SIADH- conti

- Pain e.g. postoperative
- Drugs - enhanced release of ADH or response to ADH. Cyclophosphamide, carbamazepine, Prozac, narcotics
Sodium excess

- Too much Na\(^+\) or too little water
- Can be due to increased intake or decreased excretion

Characteristics of excess sodium:

- Increases osmolality
 - movement of water from ICF to ECF
 - Cells dehydrate
 - Overall increased ECF volume (at expense of the cell volume)

Causes of sodium excess

Increase intake
- Administration of hypertonic IV solution

Renal retention
- decreased GFR
- Acute and chronic renal failure

Causes of sodium excess contd.

primary mineral corticoid excess
- Cushing syndrome
- Conn’s syndrome

Secondary mineralcorticoids excess
- CHF
- Nephrotic syndrome
- Sever liver disease i.e. cirrhosis
Causes of sodium excess conti.

Loss of excess of water
- skin
- Lung
- renal

Sodium excess and edema

Causes of edema
- Accumulation of isotonic fluid in interstitial space (increased ISF)
- Decreased colloid oncotic pressure - hypoproteinemia

Clinical feature
- Peripheral edema
- Lethargy
- Neurological dysfunction (dehydration of brain cells)
- Hypertension
- Weight gain

Sodium depletion

- Na+ can be lost from the body in either isotonic or hypotonic fluids.
- In each case there will be a decrease in ECF volume
The normal responses to hypovolemia are:
- Increases aldosterone secretion
- Low urine volume due to decreased GFR
- Increase ADH in case of severe hypovolemia

Causes of sodium depletion

Excess loss
- From kidney
 - Diuretic phase of acute renal failure
 - Diuretic therapy
 - Osmotic diuresis
 - Mineralcortical deficiency - Addison disease

From gut
- Vomiting
- Diarrhea

From skin
- Excessive sweating, burns

Inadequate intake - Rare

Clinical features results from decreased ECF

Symptoms
- Weakness, apathy, postal dizziness
- Sign
- Weight loss, tachycardia
- Hypotension
Clinical and laboratory findings in sodium and water depletion

<table>
<thead>
<tr>
<th></th>
<th>Na depletion</th>
<th>H2O depletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma Na</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>PCV</td>
<td>↑↑↑</td>
<td>N or S ↑</td>
</tr>
<tr>
<td>ECF volume</td>
<td>↓↓↓</td>
<td>N</td>
</tr>
<tr>
<td>Plasma urea</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Urine Conc.</td>
<td>↑</td>
<td>↑↑↑</td>
</tr>
</tbody>
</table>

Hypo and hypernatremia

- Hypo and hypernatremia define as 5mmole above are lower the healthy controls
- Hyponatremia frequently found in hospitalized patients due to **sick cell syndrome**

Causes of Hyponatremia

↑ Water and/or ↓ Sodium

- Excess of water (dilutional)
- SADH
- Sick cell syndrome
- CHF

Causes of Hyponatremia-conti

↑ Water and/or ↓ Sodium

- Loss of Na$^+$ from GIT
 - vomiting diarrhea
 (urine Na$^+$ < 20mmol/l)
- Loss of Na$^+$ from kidney
 - Addison disease
 (urine Na$^+$ > 20mmol/l)
Hypernatremia

- Sodium and/or Water

Hypernatremia is much less common than hyponatremia
- Loss of water > Na+
 - GIT - diarrhea,
 - Renal osmotic diuresis,
 - fever

Hypernatremia

- Sodium and/or Water

- Increased body Na+
 - steroid excess

Potassium balance

- Potassium is the major intracellular cation
- 2% in the ECF
- Gradient maintained by Na/K pump

Potassium – cont’d

- Serum K+ level maintained within a narrow limit
- Decreased K+
 - Increases cardiac muscle excitability—arrhythmia
 - Muscle weakness
 - Cardiac arrest occurs in both high and low K+
• External K⁺ balance controlled by kidney and to less extent by GIT.

99% of filtered K⁺ reabsorbed in the proximal tubules. obligatory losses is 10-20mmol/day

Factors effecting K⁺ excretion

1. amount of Na⁺ available for absorption
2. The relative availability of H⁺ and K⁺ ions in the distal cell

Factors effecting K⁺ excretion

3. aldosterone directly and indirectly stimulated K⁺ excretion

Internal distribution

Factors effecting K⁺ shifting from ICF to ECF

- insulin deficiency
- acidosis
- hyperosmolality
- cell death
Factors effecting K\(^+\) movement into cells

- after insulin therapy
- alkalosis

Hypokalemia

Serum K\(+\) < 3.5 mmol/L

- decreased K intake (rare)

- Tran-cellular K\(+\) shift
 - alkalosis
 - insulin therapy

Hypokalemia conti.

renal

Osmotic diuresis
diuretics
 - thiazides decreased Cl\(^-\) absorption
 - loop diuretics increase tubular flow, thus Na delivery to the distal

Mineralcorticoid excess
 - primary and secondary
cabenofoxalone, liquorice

RTA

Hypokalemia conti.

GIT

diarrhea
vomiting (K\(^+\) loss, alkalosis,↑RAS)
Hyperkalemia

Serum K^+ > 6.5 mmol/L

Remember: About 98% K^+ is intracellular leaving only 2% extracellular. Hence, a K^+ shift from the ICF to the ECF of only 2% can double the plasma [K^+].

Serum K^+ > 6.5 mmol/L required urgent treatm.

Potassium Imbalances – Hyperkalemia

- **Spurious or artifact**
 - hemolysis

- **Trans-cellular K^+ movement**
 - tissue damage
 - systemic acidosis
 - insulin deficiency

Potassium Imbalances – Hyperkalemia conti.

- **Decreased K^+ excretion**
 - acute renal failure
 - chronic renal failure (late)
 - K^+ sparing diuretics ACE inhibitors

- **Addison’s disease**

Hyperkalemia conti.

- Clinical feature
 - Muscle weakness, paralysis
 - Change in ECG pattern
Metabolic responses to trauma