OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines

University of Edinburgh, Osteoarticular Research Group, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom

Summary

Purpose: To develop concise, patient-focussed, up to date, evidence-based, expert consensus recommendations for the management of hip and knee osteoarthritis (OA), which are adaptable and designed to assist physicians and allied health care professionals in general and specialist practice throughout the world.

Methods: Sixteen experts from four medical disciplines (primary care, rheumatology, orthopaedics and evidence-based medicine), two continents and six countries (USA, UK, France, Netherlands, Sweden and Canada) formed the guidelines development team. A systematic review of existing guidelines for the management of hip and knee OA published between 1945 and January 2006 was undertaken using the validated appraisal of guidelines research and evaluation (AGREE) instrument. A core set of management modalities was generated based on the agreement between guidelines. Evidence before 2002 was based on a systematic review conducted by European League Against Rheumatism and evidence after 2002 was updated using MEDLINE, EMBASE, CINAHL, AMED, the Cochrane Library and HTA reports. The quality of evidence was evaluated, and where possible, effect size (ES), number needed to treat, relative risk or odds ratio and cost per quality-adjusted life years gained were estimated. Consensus recommendations were produced following a Delphi exercise and the strength of recommendation (SOR) for propositions relating to each modality was determined using a visual analogue scale.

Results: Twenty-three treatment guidelines for the management of hip and knee OA were identified from the literature search, including six opinion-based, five evidence-based and 12 based on both expert opinion and research evidence. Twenty out of 51 treatment modalities addressed by these guidelines were universally recommended. ES for pain relief varied from treatment to treatment. Overall there was no statistically significant difference between non-pharmacological therapies [0.25, 95% confidence interval (CI) 0.16, 0.34] and pharmacological therapies (ES = 0.39, 95% CI 0.31, 0.47). Following feedback from Osteoarthritis Research International members on the draft guidelines and six Delphi rounds consensus was reached on 25 carefully worded recommendations. Optimal management of patients with OA hip or knee requires a combination of non-pharmacological and pharmacological modalities of therapy. Recommendations cover the use of 12 non-pharmacological modalities: education and self-management, regular telephone contact, referral to a physical therapist, aerobic, muscle strengthening and water-based exercises, weight reduction, walking aids, knee braces, footwear and insoles, thermal modalities, transcutaneous electrical nerve stimulation and acupuncture. Eight recommendations cover pharmacological modalities of treatment including acetaminophen, cyclooxygenase-2 (COX-2) non-selective and selective oral non-steroidal anti-inflammatory drugs (NSAIDs), topical NSAIDs and capsaicin, intra-articular injections of corticosteroids and hyaluronates, glucosamine and/or chondroitin sulphate for symptom relief; glucosamine sulphate, chondroitin sulphate and diacerein for possible structure-modifying effects and the use of opioid analgesics for the treatment of refractory pain. There are recommendations covering five surgical modalities: total joint replacements, unicompartmental knee replacement, osteotomy and joint preserving surgical procedures; joint lavage and arthroscopic debridement in knee OA, and joint fusion as a salvage procedure when joint replacement had failed. Strengths of recommendation and 95% CIs are provided.

Conclusion: Twenty-five carefully worded recommendations have been generated based on a critical appraisal of existing guidelines, a systematic review of research evidence and the consensus opinions of an international, multidisciplinary group of experts. The recommendations may be adapted for use in different countries or regions according to the availability of treatment modalities and SOR for each modality of therapy. These recommendations will be revised regularly following systematic review of new research evidence as this becomes available.

Key words: OARSI, Treatment guidelines, Hip and knee osteoarthritis.

*Address correspondence and reprint requests to: Professor George Nuki, M.B., F.R.C.P., Emeritus Professor of Rheumatology, University of Edinburgh, Osteoarticular Research Group, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom. Tel: 44-131-242-6589; Fax: 44-131-242-6578; E-mail: g.nuki@ed.ac.uk

Received 19 December 2007; revision accepted 20 December 2007.
Osteoarthritis (OA) is the most common type of arthritis and the major cause of chronic musculoskeletal pain and mobility disability in elderly populations worldwide. Knee and hip pain are the major causes of difficulty in walking and climbing stairs in the elderly in Europe and the USA and as many as 40% of people over the age of 65 in the community in the United Kingdom suffer symptoms associated with knee or hip OA.

Treatment of OA of the knee and hip is directed towards:

- Reducing joint pain and stiffness.
- Maintaining and improving joint mobility.
- Reducing physical disability and handicap.
- Improving health-related quality of life.
- Limiting the progression of joint damage.
- Educating patients about the nature of the disorder and its management.

More than 50 modalities of non-pharmacological, pharmacological and surgical therapy for knee and hip OA are described in the medical literature.

Over the years a number of National and Regional Guidelines have been developed to assist physicians, allied health professionals and patients in their choice of therapy for the management of knee and hip OA, but internationally agreed and universally applicable guidelines for the management of these global disorders have been lacking.

In September 2005 the Osteoarthritis Research International (OARSI) appointed an international, multidisciplinary committee of experts with a remit to produce up to date, evidence-based, globally relevant, consensus recommendations for the management of knee and/or hip OA in 2007. The first part of the work of this committee was to undertake a critical appraisal of all existing evidence-based and consensus guidelines for the treatment of knee and/or hip OA and a systematic review of the recent research evidence.

The results of this critical appraisal and systematic review were published recently. This second part of the report contains the current OARSI evidence-based, expert consensus recommendations for the treatment of knee and/or hip OA.

Scope and purpose

The guidelines are intended to provide concise, patient-focused, up to date, evidence-based, expert consensus recommendations for the management of hip and knee OA, which are globally relevant.

Target users

The guidelines have been developed to provide assistance to physicians and allied health care professionals who deal with patients with OA hip and knee in both primary and secondary (specialist) care settings. The guidelines should also provide a helpful resource for patients with OA hip or knee, patient representative groups and health care funders and administrators. It is anticipated that these OARSI International Core Recommendations will be modified and adapted as appropriate for National and Regional use.

Stakeholder involvement

The guideline development committee was composed of 16 experts from four medical disciplines (primary care, rheumatology, orthopaedics, and evidence-based medicine) and six countries in Europe and North America (France, Netherlands, Sweden, UK, Canada and USA). All members of the development team participated in:

1. a critical appraisal of existing treatment guidelines;
2. a Delphi exercise to generate consensus recommendations; and
3. an exercise to grade the strength of recommendation (SOR) for all modalities of therapy recommended.

Rigour of development

CRITICAL APPRAISAL OF EXISTING GUIDELINES

Methodological details of the systematic literature search, the inclusion/exclusion criteria, the quality and content assessment and the data analyses of all existing guidelines for the management of hip and/or knee OA published between 1945 and October 2005 can be found in the first part of this report. The quality of the guidelines was assessed using the AGREE instrument and standardised percent scores (0–100%) for scope, stakeholder involvement, rigour, clarity, applicability and editorial independence, as well as overall quality, were calculated. Treatment modalities addressed and recommended by the guidelines were summarised. Agreement (%) was estimated and the best level of evidence (LoE) to support each recommendation was extracted.

SYSTEMATIC REVIEW OF THE MORE RECENT EVIDENCE

Systematic reviews of research evidence for the treatment of hip and/or knee OA up to January 2002 were available from the systematic literature review undertaken by the European League against Rheumatism (EULAR). Methodological details of the systematic literature search, the inclusion/exclusion criteria, the quality assessments and outcome measures (efficacy, side effects and cost-effectiveness) for research evidence relating to the treatment of OA hip and/or knee published between 31st January 2002 and 31st January 2006 can also be found in the first part of this report. The quality of evidence was evaluated using the Oxman and Guyatt method for systematic reviews and the Jadad scale for randomised controlled trials (RCTs). Where possible, effect size (ES), number needed to treat (NNT), relative risk (RR) or odds ratio (OR) and cost per quality-adjusted life year (QALY) gained were estimated. Sensitivity analyses were undertaken to determine whether selected RCTs published after January 31st 2006 would alter any of the evidence-based conclusions from the critical appraisal of existing guidelines and the systematic review of the recent research evidence significantly.

DELPHI EXERCISE TO GENERATE CONSENSUS RECOMMENDATIONS

Concise propositions relating to all aspects of non-pharmacological, pharmacological and surgical treatments of OA hip and/or knee were generated as follows.

The committee of experts was divided into three subgroups:

- Non-pharmacological: Altman, Brandt, Croft, and Doherty.
- Pharmacological: Abramson, Bierma-Zeinstra, Dougados, and Hochberg.
- Surgical: Arden, Hunter, Kwoh, Lohmander, and Tugwell.

Each expert was provided with a comprehensive table of 51 potential treatment modalities together with a summary of recommendations from the critical appraisal of existing guidelines (percentage of guidelines addressing modality, AGREE instrument score for quality, the LoE and ES...
for pain\(^8\)) and a summary of the systematic analysis of the research evidence from 2002 to 2006\(^6\) (Quality scores\(^7\), ES\(^1\) for pain, function and stiffness, the NNT\(^9\), the RR/OR\(^10\) and the cost per QUALY\(^11\)). A full list of references from which the summary data had been extracted was also provided. With the exception of the co-chairs (RM and GN) and the lead researcher (WZ), who did not contribute to the primary generation of propositions in order to avoid administrative bias, each committee expert was asked to generate a comprehensive list of propositions relating to modalities of treatment in the group to which they were assigned, based on the available research evidence and their own clinical expertise. There was no limit to the number of propositions proposed for the initial master list.

After elimination of closely similar or overlapping propositions a master list of 110 propositions relating to 54 non-pharmacological modalities of treatment, 37 pharmacological, 18 surgical and one combining non-pharmacological and pharmacological modalities was circulated to all members of the guideline development group apart from RM, GN and WZ for acceptance or rejection. The experts were also given the opportunity to suggest amalgamations and rewording of individual propositions. After four rounds of the Delphi exercise in which propositions with >60% of votes were accepted, those with <20% were rejected and those attracting between 20% and 60% of votes were taken forward for consideration following further amalgamations and minor rewording, provisional consensus was reached on 34 propositions. These were posted on the OARSI website and presented for comments and suggestions by OARSI members. Subsequently emphasis should be placed on encouraging adherence to the regimen of non-pharmacological therapy.

SOR: 98% (95% CI 93–99)

Combination of pharmacological and non-pharmacological treatments is frequently employed in clinical practise and is universally recommended in 12/12 existing guidelines for the management of hip and/or knee OA\(^8\). Although there was 100% consensus and strong recommendation for combining pharmacological and non-pharmacological therapies following the Delphi exercise, this recommendation lacks evidence from RCTs with appropriate factorial design. It is largely based on expert opinion (LoE IV) and uncontrolled observations of additional benefit in RCTs and meta-analyses (MAs) of trials of non-pharmacological modalities of therapy (e.g., exercise\(^13,14\), weight reduction\(^15,16\), and education\(^17\)) where all patients were receiving pharmacological treatment with analgesics or non-steroidal anti-inflammatory drugs (NSAIDs).

Non-pharmacological modalities of treatment

2. All patients with hip and knee OA should be given information access and education about the objectives of treatment and the importance of changes in lifestyle, exercise, pacing of activities, weight reduction, and other measures to unload the damaged joint(s). The initial focus should be on self-help and patient-driven treatments rather than on passive therapies delivered by health professionals. Subsequently emphasis should be placed on encouraging adherence to the regimen of non-pharmacological therapy.

SOR: 97% (95% CI 95–99)

Provision of information and overall patient education about the objectives of treatment and the importance of changes in lifestyle, exercise, pacing of activities, weight reduction and other measures to unload damaged joints is supported by two MAs\(^17,18\) (LoE Ia), but the ES for pain relief is small (0.06 95% CI 0.02, 0.10)\(^18\) and RCTs with an appropriate factorial design to assess the efficacy of individual components of the education programme have not been undertaken. Attempts to identify which components of self-management programmes contribute most to their efficacy
<table>
<thead>
<tr>
<th>Proposition</th>
<th>LoE</th>
<th>ES for pain (95% CI)</th>
<th>Frequency recommended in existing guidelines</th>
<th>Level of consensus (%)</th>
<th>SOR (%) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Optimal management of OA requires a combination of non-pharmacological and pharmacological modalities.</td>
<td>IV</td>
<td></td>
<td>12/12</td>
<td>100</td>
<td>96 (93–99)</td>
</tr>
<tr>
<td>Non-pharmacological modalities of treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. All patients with hip and knee OA should be given information access and education about the objectives of treatment and the importance of changes in lifestyle, exercise, pacing of activities, weight reduction, and other measures to unload the damaged joint(s). The initial focus should be on self-help and patient-driven treatments rather than on passive therapies delivered by health professionals. Subsequently emphasis should be placed on encouraging adherence to the regimen of non-pharmacological therapy.</td>
<td>la (education)</td>
<td>0.06 (0.02, 0.10)</td>
<td>8/8</td>
<td>92</td>
<td>97 (95–99)</td>
</tr>
<tr>
<td>3. The clinical status of patients with hip or knee OA can be improved if patients are contacted regularly by phone.</td>
<td>IV</td>
<td></td>
<td>5/5</td>
<td>100</td>
<td>89 (82–96)</td>
</tr>
<tr>
<td>4. Patients with symptomatic hip and knee OA may benefit from referral to a physical therapist for evaluation and instruction in appropriate exercises to reduce pain and improve functional capacity. This evaluation may result in provision of assistive devices such as canes and walkers, as appropriate.</td>
<td>IV</td>
<td></td>
<td>11/11</td>
<td>100</td>
<td>90 (84–96)</td>
</tr>
<tr>
<td>5. Patients with hip and knee OA should be encouraged to undertake, and continue to undertake, regular aerobic, muscle strengthening and range of motion exercises. For patients with symptomatic hip OA, exercises in water can be effective.</td>
<td>la (knee)</td>
<td>0.52 (0.34, 0.70) aerobic</td>
<td>21/21</td>
<td>85</td>
<td>96 (93–99)</td>
</tr>
<tr>
<td>6. Patients with hip and knee OA, who are overweight, should be encouraged to lose weight and maintain their weight at a lower level.</td>
<td>IV</td>
<td></td>
<td>13/14</td>
<td>100</td>
<td>96 (92–100)</td>
</tr>
<tr>
<td>7. Walking aids can reduce pain in patients with hip and knee OA. Patients should be given instruction in the optimal use of a cane or crutch in the contralateral hand. Frames or wheeled walkers are often preferable for those with bilateral disease.</td>
<td>IV</td>
<td></td>
<td>8/9</td>
<td>92</td>
<td>76 (69–83)</td>
</tr>
<tr>
<td>8. In patients with knee OA and mild/moderate varus or valgus instability, a knee brace can reduce pain, improve stability and diminish the risk of falling.</td>
<td>LA</td>
<td></td>
<td>12/13</td>
<td>92</td>
<td>77 (66–88)</td>
</tr>
<tr>
<td>9. Every patient with hip or knee OA should receive advice concerning appropriate footwear. In patients with knee OA insoles can reduce pain and improve ambulation. Lateral wedged insoles can be of symptomatic benefit for some patients with medial tibia-femoral compartment OA.</td>
<td>LA</td>
<td></td>
<td>0.69 (−0.07, 1.45)</td>
<td>7/10</td>
<td>64 (60–68)</td>
</tr>
<tr>
<td>10. Some thermal modalities may be effective for relieving symptoms in hip and knee OA.</td>
<td>LA</td>
<td></td>
<td>8/10</td>
<td>69</td>
<td>58 (45–72)</td>
</tr>
<tr>
<td>11. TENS can help with short-term pain control in some patients with hip or knee OA.</td>
<td>LA</td>
<td></td>
<td>0.51 (0.23, 0.79)</td>
<td>5/8</td>
<td>69 (47–71)</td>
</tr>
</tbody>
</table>
Pharmacological modalities of treatment

13. Acetaminophen (up to 4 g/day) can be an effective initial oral analgesic for treatment of mild to moderate pain in patients with knee or hip OA. In the absence of an adequate response, or in the presence of severe pain and/or inflammation, alternative pharmacologic therapy should be considered based on relative efficacy and safety, as well as concomitant medications and co-morbidities.

14. In patients with symptomatic hip or knee OA, non-steroidal anti-inflammatory drugs (NSAIDs) should be used at the lowest effective dose but their long-term use should be avoided if possible. In patients with increased GI risk, either a COX-2 selective agent or a non-selective NSAID with co-prescription of a PPI or misoprostol for gastroprotection may be considered, but NSAIDs, including both non-selective and COX-2 selective agents, should be used with caution in patients with CV risk factors.

15. Topical NSAIDs and capsaicin can be effective as adjunctives and alternatives to oral analgesic/anti-inflammatory agents in knee OA.

16. IA injections with corticosteroids can be used in the treatment of hip or knee OA, and should be considered particularly when patients have moderate to severe pain not responding satisfactorily to oral analgesic/anti-inflammatory agents and in patients with symptomatic knee OA with effusions or other physical signs of local inflammation.

17. Injections of IA hyaluronate may be useful in patients with knee or hip OA. They are characterised by delayed onset, but prolonged duration, of symptomatic benefit when compared to IA injections of corticosteroids.

18. Treatment with glucosamine and/or chondroitin sulphate may provide symptomatic benefit in patients with knee OA. If no response is apparent within 6 months treatment should be discontinued.

19. In patients with symptomatic knee OA glucosamine sulphate and chondroitin sulphate may have structure-modifying effects while diacerein may have structure-modifying effects in patients with symptomatic OA of the hip.

20. The use of weak opioids and narcotic analgesics can be considered for the treatment of refractory pain in patients with hip or knee OA, where other pharmacological agents have been ineffective, or are contraindicated. Stronger opioids should only be used for the management of severe pain in exceptional circumstances. Non-pharmacological therapies should be continued in such patients and surgical treatments should be considered.

Surgical modalities of treatment

21. Patients with hip or knee OA who are not obtaining adequate pain relief and functional improvement from a combination of non-pharmacological and pharmacological treatment should be considered for joint replacement surgery. Replacement arthroplasties are effective, and cost-effective interventions for patients with significant symptoms, and/or functional limitations associated with a reduced health-related quality of life, despite conservative therapy.
Table I (continued)

<table>
<thead>
<tr>
<th>Proposition</th>
<th>LoE</th>
<th>ES for pain (95% CI)</th>
<th>Frequency recommended in existing guidelines</th>
<th>Level of consensus (%)</th>
<th>SOR (%) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Unicompartmental knee replacement is effective in patients with knee OA restricted to a single compartment.</td>
<td>IIb</td>
<td></td>
<td></td>
<td>100</td>
<td>76 (64–88)</td>
</tr>
<tr>
<td>23. Osteotomy and joint preserving surgical procedures should be considered in young adults with symptomatic hip OA, especially the presence of dysplasia. For the young and physically active patient with significant symptoms from unicompartmental knee OA, high tibial osteotomy may offer an alternative intervention that delays the need for joint replacement some 10 years.</td>
<td>IIb</td>
<td></td>
<td></td>
<td>100</td>
<td>75 (64–88)</td>
</tr>
<tr>
<td>24. The role of joint lavage and arthroscopic debridement in knee OA are controversial. Although some studies have demonstrated short-term symptom relief, others suggest that improvement in symptoms could be attributable to a placebo effect.</td>
<td>Ib (lavage)</td>
<td>0.09 (−0.27, 0.44)</td>
<td>3/3</td>
<td>100</td>
<td>60 (47–82)</td>
</tr>
<tr>
<td>25. In patients with OA of the knee, joint fusion can be considered as a salvage procedure when joint replacement has failed.</td>
<td>IV</td>
<td></td>
<td>2/2</td>
<td>100</td>
<td>69 (57–82)</td>
</tr>
</tbody>
</table>

LoE: Ia: meta-analysis of RCTs; Ib: RCT; IIa controlled study without randomisation; IIb: quasi-experimental study (e.g., uncontrolled trial, one arm dose-response trial, etc.); III: observational studies (e.g., case–control, cohort, and cross-sectional studies); and IV: expert opinion. ES is the standard mean difference, i.e., the mean difference between a treatment and a control group divided by the SD of the difference. ES = 0.2 is considered small, ES = 0.5 is moderate, and ES > 0.8 is large.
was strongly recommended by 100% of the expert panel and is also recommended in 5/5 of existing guidelines where referral for physiotherapy was considered. The recommendation to refer patients with symptomatic knee OA for physical therapy is supported by the results of three RCTs. One demonstrated significant short-term (8 weeks) improvements in pain, physical function and health-related quality of life. Another showed improvements in WOMAC indices up to 1 year after referral for a 4 week treatment programme by a physical therapist, and a third demonstrated improved clinical outcomes over and above a programme of home exercises. However two other RCTs of multimodal physiotherapy programmes, including patellar taping and exercises, showed no persistent benefits when compared with standard treatment without physical therapy or simulated placebo physical therapy treatments in WOMAC indices up to 1 year after referral for physical therapy treatment modalities. There are no published RCTs of referral of patients with symptomatic hip OA for multimodal physical therapy.

5. Patients with hip and knee OA should be encouraged to undertake, and continue to undertake, regular aerobic, muscle strengthening and range of motion exercises. For patients with symptomatic hip OA, exercises in water can be effective.

SOR: 96% (95% CI 93–99)

The recommendation that patients with OA knee should be encouraged to undertake regular aerobic walking exercises and home-based quadriceps muscle strengthening exercises is a core recommendation in 21/21 published guidelines and is supported by a systematic review and MA of 13 RCTs (LoE Ia). Pooled ESs for pain relief are in the moderate range for both aerobic (ES = 0.52, 95% CI 0.34, 0.70) and muscle strengthening exercises (ES = 0.32, 95% CI 0.23, 0.42) and pooled ESs for self-reported disability are 0.46 (95% CI 0.25, 0.67) for aerobic exercise and 0.32 (95% CI 0.23, 0.41) for quadriceps strengthening exercises. By contrast the recommendation that patients with hip OA continue to undertake regular aerobic, muscle strengthening and range of motion exercises is largely based on clinical expertise (LoE IV). Evidence for pain relief (ES = 0.25, 95% CI 0.02, 0.47) and improvement in stiffness (ES = –0.17, 95% CI 0.05, 0.39) in patients with symptomatic hip OA following exercise in water comes from two RCTs (LoE Ib).

6. Patients with hip and knee OA, who are overweight, should be encouraged to lose weight and maintain their weight at a lower level.

SOR: 96% (95% CI 92–100)

Encouragement to lose weight and maintain weight at a lower level in overweight patients with lower limb OA was strongly recommended by all members of the guideline development group (100% Table I) and is a core recommendation in 13/14 existing guidelines for the management of lower limb OA where this modality of therapy was considered. At the time of completing the systematic review of the published research evidence before 31st January 2006 the recommendation was supported by the results of two high quality RCTs (LoE Ib). In patients with knee OA the ESs for relief of pain (ES = 0.13, 95% CI –0.12, 0.38), stiffness (0.36 95% CI –0.08, 0.80) and functional improvement (0.69 95% CI 0.24, 1.14) were small to moderate with an NNT of 3 (95% CI 2, 9) for a decrease in WOMAC scores of >50%, 8 weeks after commencing a low energy diet (3.4 MJ/day). The recommendation is further supported by the publication of a recent systematic review and MA of four RCTs with data on 454 patients with OA knee (LoE Ia). The pooled ESs for improvements in pain and physical disability are confirmed as small (0.20 95% CI 0, 0.39 and 0.23 95% CI 0.04, 0.42, respectively), with a mean weight reduction of 6.1 kg (range 4.7–7.6 kg). Meta-regression analysis demonstrated significant improvement in disability with weight loss > 5% or at a rate of >0.24%/week. There are no published RCTs to confirm comparable benefits from weight loss in patients with hip OA. The recommendation that patients with hip OA should be encouraged to lose weight and maintain their weight at a lower level is based on expert opinion (LoE IV) and evidence of a relationship between obesity and hip OA in case–control studies.

7. Walking aids can reduce pain in patients with hip and knee OA. Patients should be given instruction in the optimal use of a cane or crutch in the contralateral hand. Frames or wheeled walkers are often preferable for those with bilateral disease.

SOR: 90% (95% CI 84–96)

Although there are no RCTs to support their use there was complete expert consensus for the proposition that walking aids can reduce pain in patients with hip and knee OA (LoE IV), and for the recommendation that patients should be given instruction in the optimal use of a cane or crutch in the contralateral hand. This is supported by kinematic studies of knee moments of force following the use of a cane in the contralateral hand in patients with knee OA, and earlier studies of the biomechanics of the hip following the use of a stick in the contralateral hand in patients with hip OA. There are data that show that up to 40% of patients with hip or knee OA own a cane and sticks or canes are recommended for patients with symptomatic knee OA in 11/11 existing guidelines.

8. In patients with knee OA and mild/moderate varus or valgus instability, a knee brace can reduce pain, improve stability and diminish the risk of falling.

SOR: 76% (95% CI 69–83)

Evidence that pain, stiffness and physical function are significantly improved using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the McMaster Toronto arthritis patient preference questionnaire (MACTAR) with knee braces in patients with knee OA comes from a Cochrane review (LoE Ia) and a single RCT which compared the use of a valgus brace + medical treatment with a neoprene sleeve + medical treatment and medical treatment alone. Assessment at 6 months showed greater improvement in WOMAC scores with use of the valgus brace than the neoprene sleeve. Knee braces are recommended in 8/9 existing guidelines for the management of knee OA where this modality of treatment was considered.

9. Every patient with hip or knee OA should receive advice concerning appropriate footwear. In patients with knee OA insoles can reduce pain and improve ambulation. Lateral wedged insoles can be of symptomatic benefit for some patients with medial tibio-femoral compartment OA.

SOR: 77% (95% CI 66–88)
The use of lateral wedged insoles for patients with medial tibio-femoral compartment OA is recommended in 12/13 existing guidelines for the management of knee OA. The proposition that lateral wedged insoles can provide symptomatic benefit for patients with medial tibio-femoral compartment OA, as well as decreasing lateral thrust in the knee, is supported by three observational studies, but not by three RCTs. Despite the fact that there was no symptomatic benefit (WOMAC pain, joint stiffness, and physical functioning subscales) at 6 months or 2 years in a prospective RCT of laterally wedged insoles in 156 patients with medial femorotibial OA, NSAID usage was reduced and compliance was better in the treatment group. This was accepted by the investigators and a systematic review as evidence supporting clinical benefit (LoE Ia). No structural protection was observed in this study after 2 years. The recommendation that every patient with hip or knee OA should receive advice concerning appropriate footwear is based on expert opinion alone (LoE IV). There have been no controlled trials of footwear in patients with hip OA and no controlled trials to support the hypothesis that sports shoes or other footwear with shock absorbing soles provide symptomatic benefit in patients with lower limb OA (hip or knee) by reducing impact loads.

10. Some thermal modalities may be effective for relieving symptoms in hip and knee OA.

SOR: 64% (95% CI 60–68)

Heat and cryotherapy are used very widely in the management of patients with OA. Heat can be administered by a variety of techniques including diathermy and the application of heat packs or immersion in warm water or wax baths, while cryotherapy is usually administered by application of ice packs or massage with ice. Thermotherapy of one kind or another is recommended in 7/10 existing guidelines where these modalities were considered. Supporting evidence is very limited. A single systematic review (LoE Ia) analysed two RCTs of ice massage in 100 patients with knee OA and ice packs or short wave diathermy in two groups of 15 and 17 patients with knee OA. Massaging with ice for 20 min × 5/week for 2 weeks resulted in clinically significant (29%) improvement in quadriceps strength (ES = 1.03, 95% CI 0.44, 1.62) but had no clinically significant effect on the range of movement or on walking. Application of ice packs × 3/week for 3 weeks was followed by some improvement in pain (weighted mean difference, WMD = −2.70 95% CI −5.52, 0.12) but this was not statistically significant. Short wave diathermy was not followed by any improvement in pain after 3 weeks and there was no evidence of clinical benefit following either modality of thermotherapy after 3 months. There have been no controlled trials of thermotherapy for patients with hip OA.

11. Transcutaneous electrical nerve stimulation (TENS) can help with short-term pain control in some patients with hip or knee OA.

SOR: 58% (95% CI 45–72)

TENS is a recommended treatment for relief of pain in 8/10 existing guidelines for the management of knee OA. Evidence for efficacy available to the OARSI treatment guidelines development group was summarised in a Cochrane systematic review published in 2000 and a systematic review published in 2004 (NNT = 2, 95% CI 1, 5) (LoE Ia). The short-term efficacy of 2–4 weeks treatment with TENS in providing clinically significant pain relief in patients with knee OA has been subsequently confirmed in a recent systematic review and MA of seven RCTs involving 425 patients. Dose-dependent inhibition of nociceptive nerve transmission at a segmental level may provide a physiological rationale for the efficacy of TENS, and no serious adverse effects of therapy have been reported.

12. Acupuncture may be of symptomatic benefit in patients with knee OA.

SOR: 59% (95% CI 47–71)

Acupuncture is recommended as a modality of therapy for the symptomatic treatment of patients with OA knee or hip in 5/8 existing guidelines in which it was considered, and its recommendation achieved a 69% consensus following the Delphi exercise. A summary of the evidence for its clinical efficacy in lower limb joint OA which was available to the OARSI treatment guideline development group showed moderate ESs for pain (ES = 0.51, 95% CI 0.23, 0.79), stiffness (ES = 0.41, 95% CI 0.13, 0.69) and function (ES = 0.51, 95% CI 0.28, 0.79) with an NNT of 4 (95% CI 3.9) for clinically significant relief of pain (LoE Ib). An earlier (2001) systematic review of the evidence for the efficacy of acupuncture in knee OA which included seven RCTs and 393 patients suggested that real acupuncture was more effective than sham acupuncture for relief of pain (LoE Ia) but the evidence with regard to improvement in function was inconclusive. A very recent RCT in 352 patients with knee OA showed very small, statistically significant, improvements in pain intensity in patients 2 and 6 weeks following true acupuncture but the addition of acupuncture to a course of advice and exercises delivered by physiotherapists provided no additional improvement in the WOMAC index pain subscale at 6 months.

Pharmacological modalities of treatment

13. Acetaminophen (paracetamol) (up to 4 g/day) can be an effective initial oral analgesic for treatment of mild to moderate pain in patients with knee or hip OA. In the absence of an adequate response, or in the presence of severe pain and/or inflammation, alternative pharmacologic therapy should be considered based on relative efficacy and safety, as well as concomitant medications and comorbidities.

SOR: 92% (95% CI 88–99)

Acetaminophen (paracetamol) is a core recommendation for use as an analgesic in 16/16 existing guidelines for the management of hip or knee OA. Current European (EU-LAR) recommendations for the management of hip and knee OA suggest that, because of its safety and efficacy, doses of up to 4 g/day should be the oral analgesic of first choice for mild/moderate pain, and if unsuccessful, should be used as the preferred long-term oral analgesic. However, in recent years both the efficacy and the safety of long-term use of acetaminophen at this dose have been questioned. Evidence for efficacy available to the OARSI treatment guideline development committee was summarised in a Cochrane systematic review largely based on a single RCT published before July 2002 and an MA of 10 RCTs published in 2004 with data from 1712 OA patients (LoE Ia). Efficacy was confirmed but the ES was small (ES = 0.21, 95% CI 0.02, 0.4) in 2004. A more recently updated Cochrane systematic review published in 2006 included...
data from 5986 patients in 15 RCTs (7 vs placebo and 10 vs NSAIDs). Acetaminophen was superior to placebo in 5/7 trials and pooled analysis of data on overall pain using multiple methods showed a statistically significant, but very small reduction (ES = 0.13, 95% CI 0.02) which is of questionable clinical significance. The NNT to achieve an improvement in pain ranged from 2 (1, 2)69 in the earlier systematic review to 4–1670 in the later MA. There was no significant difference in toxicity between acetaminophen and placebo in these short-term trials (RR = 1.02, 95% CI 0.89, 1.87)71. The evidence for possible gastrointestinal (GI) and renal toxicity with long-term treatment with acetaminophen 4 g/day, reviewed in the first part of this report, remains equivocal. The RR for upper GI bleeding or perforation ranged from RR 1.2 (95% CI 0.8, 1.7)71 in a MA of three case–control studies with individual patient data to RR 3.6 (95% CI 2.60, 5.10)72 in a case–control study using the UK General Practice Research Database; and the RR of renal insufficiency ranged from RR 0.83 (95% CI 0.50, 1.39) in one cohort study (CS)72 to RR 2.5 (95% CI 1.7, 2.6) in a case–control comparison73.

14. In patients with symptomatic hip or knee OA, non-steroidal anti-inflammatory drugs (NSAIDs) should be used at the lowest effective dose but their long-term use should be avoided if possible. In patients with increased GI risk, either a COX-2 selective agent or a non-selective NSAID with co-prescription of a proton pump inhibitor (PPI) or misoprostol for gastroprotection may be considered, but NSAIDs, including both non-selective and COX-2 selective agents, should be used with caution in patients with cardiovascular (CV) risk factors.

SOR: 93% (95% CI 88–99)

The use of oral NSAIDs with misoprostol or a PPI for gastroprotection is recommended in 8/8 existing guidelines for the management of hip or knee OA8 and the use of selective COX-2 inhibitors is recommended in all 11 of the guidelines where this modality of therapy was considered. A telephone survey of 1149 patients with OA in the UK in 2003 revealed that only 15% were taking paracetamol, while 32% were taking non-selective NSAIDs and 18% COX-2 selective drugs for analgesia8. There is evidence that NSAIDs can be effective in reducing pain in patients with OA knee and hip (LoE la). A 2004 MA of 23 short-term, placebo-controlled RCTs of NSAIDs, including COX-2 selective agents in >10000 patients with knee OA, showed that the ES for pain reduction was 0.32 (95% CI 0.24, 0.39)75. However in 10 trials that did not exclude non-responders where the outcomes were more homogeneous the ES for pain reduction was smaller (ES = 0.23, 95% CI 0.15, 0.31)75. Evidence that NSAIDs are superior to acetaminophen for pain relief in patients with lower limb joint OA is available from another 2004 MA of RCTs69 (ES = 0.20, 95% CI 0.10, 0.30). The clinical response rate was higher (RR = 1.24, 95% CI 1.08, 1.41) and the number of patients preferring NSAIDs to acetaminophen was considerably greater (RR = 2.46, 95% CI 1.51, 4.12)68. The ESs for pain relief in short-term trials are, however, less than 0.4, which has been suggested as the minimum to be of any clinical importance76.

There is abundant evidence that NSAIDs are associated with more adverse effects than acetaminophen in short-term trials. The 2004 MA69 showed that NSAIDs were associated with GI discomfort more frequently than acetaminophen (RR = 1.35, 95% CI 1.05, 1.75) and this was confirmed in the more recent Cochrane systematic review of short-term RCTs (RR = 1.47, 95% CI 1.08, 2.00)70. More importantly NSAIDs can cause serious GI complications, such as peptic ulcers, perforations and bleeds (PUBS) and this risk increases with age, concurrent use of other medications, and probably with the duration of therapy72. A MA of severe upper GI complications of NSAIDs showed an OR of 5.36 (95% CI 1.79, 16.1) in 16 NSAID vs placebo trials in 4431 patients and a pooled OR for PUBS of 3.0 (95% CI 2.5, 3.7) in 23 case–control studies in 25,732 patients75. The pooled RR of PUBS from nine cohort studies representing 750,000 person years of drug exposure was 2.7 (95% CI 2.1, 3.5)75. The recommendation that in patients with increased GI risk, either a COX-2 selective agent or a non-selective NSAID with co-prescription of a PPI or misoprostol for gastroprotection should be considered is supported by evidence from a systematic review of 112 RCTs which included nearly 75,000 patients79 (LoE la). The RR for symptomatic ulcers and serious GI complications with these different strategies are shown in Table III. There was no evidence for similar gastroprotection with H2 receptor antagonists and treatment with misoprostol is associated with an increased risk of diarrhoea (RR = 1.81, 95% CI 1.52, 2.61)80 and the GI protection that is associated with the use of COX-2 selective agents is largely lost when low-dose aspirin is administered concurrently for CV prophylaxis81.

What is the evidence to support the recommendation that NSAIDs, including both non-selective and COX-2 selective agents, should be used with caution in patients with CV risk factors? Following the withdrawal of the COX-2 selective NSAID rofecoxib in 2004 because of an increased RR of thrombotic CV events including myocardial infarction and stroke in a colorectal adenoma chemoprevention trial82, a number of RCTs and systematic reviews of the CV safety of other COX-2 selective and non-selective NSAIDs have been undertaken83–86. Table IV shows the RRs for CV events in patients treated with COX-2 selective and non-selective NSAIDs. While the increased risk of CV adverse events with rofecoxib was confirmed, similar CV toxicity was not seen consistently with celecoxib or valdecoxib and the overall CV risk associated with COX-2 selective inhibitors was not significantly greater than that associated with conventional non-selective NSAIDs (RR = 1.19, 95% CI 0.80, 1.75)73. This has been borne out in the more recent 2006 systematic review and MA of atherothrombotic complications of COX-2 selective and non-selective NSAIDs87.

The incidence of serious vascular events was 1% per annum in patients treated with COX-2 selective agents compared with 0.9% in those on traditional NSAIDs (RR = 1.16, 95% CI 0.97, 1.38)87. There was, however, some heterogeneity in risk among the traditional NSAIDs with a modest increase in risk of CV events with ibuprofen (RR = 1.51, 95% CI 0.96, 2.37) and diclofenac (RR = 1.63, 95% CI 1.12, 2.37) but not with naproxen (RR = 0.92, 95% CI 0.67, 1.26)87. The current advice88 from the European Agency for the Evaluation of Medicinal Products (EMEA) is that COX-2 selective NSAIDs are contraindicated in patients with ischaemic heart disease or stroke and that prescribers should exercise caution when prescribing COX-2 inhibitors for patients with risk factors for heart disease, such as hypertension, hyperlipidaemia, diabetes and smoking, as well as for patients with peripheral arterial disease. In the USA all marketed prescription NSAIDs, both non-selective and COX-2 selective carry a boxed warning about their potential for causing CV events and GI bleeding.
The EMEA also advises

- Prescribers and patients should continue to use NSAIDs at the lowest effective dose for the shortest duration to control symptoms.
- Prescribers should continue to choose any NSAID on the basis of the overall safety profile of the product, as set out in the product information, and the patient’s individual risk factors.
- Prescribers should not switch between NSAIDs without careful consideration of the overall safety profile of the products and the patient’s individual risk factors, as well as the patient’s preferences.

15. Topical NSAIDs and capsaicin can be effective as adjunctives and alternatives to oral analgesic/anti-inflammatory agents in knee OA.

SOR: 85% (95% CI 75–95)

Table III

Relative risk of GI adverse events associated with NSAIDs and strategies for their prevention

<table>
<thead>
<tr>
<th>Intervention*</th>
<th>Adverse events</th>
<th>RR/OR (95% CI)</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>GI discomfort</td>
<td>0.80 (0.27, 2.37)</td>
<td>MA of RCTs<sup>65</sup></td>
</tr>
<tr>
<td>NSAIDs</td>
<td>GI perforation/bleed</td>
<td>3.60 (2.60, 5.10)</td>
<td>CC<sup>64</sup></td>
</tr>
<tr>
<td>Topical NSAIDs</td>
<td>GI bleeding</td>
<td>1.2 (0.8, 1.7)</td>
<td>MA of CCs<sup>71</sup></td>
</tr>
<tr>
<td>NSAIDs</td>
<td>GI perforation/ulcer/bleed</td>
<td>5.36 (1.79, 16.10)</td>
<td>MA of RCTs<sup>76</sup></td>
</tr>
<tr>
<td>NSAIDs</td>
<td>GI bleeding</td>
<td>2.70 (2.10, 3.50)</td>
<td>MA of CSs<sup>75</sup></td>
</tr>
<tr>
<td>NSAIDs</td>
<td>GI bleeding</td>
<td>3.00 (2.70, 3.70)</td>
<td>MA of CCs<sup>78</sup></td>
</tr>
<tr>
<td>H2 blocker + NSAID vs NSAID</td>
<td>Serious GI complications</td>
<td>0.33 (0.01, 8.14)</td>
<td>MA of RCTs<sup>79</sup></td>
</tr>
<tr>
<td>PPI + NSAID vs NSAID</td>
<td>Symptomatic ulcers</td>
<td>0.46 (0.07, 2.92)</td>
<td>MA of RCTs<sup>79</sup></td>
</tr>
<tr>
<td>Topical NSAIDs</td>
<td>Symptomatic ulcer</td>
<td>0.09 (0.02, 0.47)</td>
<td>MA of RCTs<sup>66</sup></td>
</tr>
<tr>
<td>Misoprostol + NSAID vs NSAID</td>
<td>Serious GI complications</td>
<td>0.57 (0.36, 0.91)</td>
<td>MA of RCTs<sup>79</sup></td>
</tr>
<tr>
<td>Misoprostol + NSAID vs NSAID</td>
<td>Symptomatic ulcer</td>
<td>0.36 (0.20, 0.67)</td>
<td>MA of RCTs<sup>79</sup></td>
</tr>
<tr>
<td>Topical NSAIDs</td>
<td>Symptomatic ulcer</td>
<td>1.81 (1.52, 2.61)</td>
<td>MA of RCTs<sup>60</sup></td>
</tr>
<tr>
<td>COX-2 inhibitors vs NSAID</td>
<td>Serious GI complications</td>
<td>0.55 (0.38, 0.80)</td>
<td>MA of RCTs<sup>79</sup></td>
</tr>
<tr>
<td>COX-2 inhibitors vs NSAID</td>
<td>Symptomatic ulcer</td>
<td>0.49 (0.38, 0.62)</td>
<td>MA of RCTs<sup>79</sup></td>
</tr>
</tbody>
</table>

RR: relative risk; OR: odds ratio; CI: confidence interval; GI: gastrointestinal; NSAID: non-steroidal anti-inflammatory drug; H2 blockers: histamine type 2 receptor antagonists.

*Compared with placebo/non-exposure unless otherwise stated.

Topical NSAIDs are widely used as adjunctive or alternative therapy by patients with OA knee and are recommended in 7/9 existing guidelines where this modality of therapy was considered⁴. A MA of 13 RCTs, including 1983 patients with hand as well as knee OA, undertaken in 2004 confirmed that topical NSAIDs were superior to placebo in relieving pain and stiffness and in improving function (LoE Ia)⁸⁹. Efficacy for pain relief was only apparent in the first 2 weeks of treatment with ESs of 0.41 (95% CI 0.16, 0.66) in week 1 and 0.40 (95% CI 0.15, 0.65) in week 2 but topical NSAIDs are less effective than oral NSAIDs in the first week of treatment. The NNT for topical NSAIDs was only 3 (95% CI 2, 4) but placebo effects may be large with all topical therapies. The ESs for improvement in stiffness and in function were 0.49 (95% CI 0.17, 0.80) and 0.36 (95% CI 0.24, 0.48), respectively. However the MA showed evidence of statistically significant asymmetry of a funnel plot⁹⁰ suggesting the possibility of publication bias.

Table IV

Relative risks of CV and renal adverse events associated with COX-2 selective and non-selective NSAIDs

<table>
<thead>
<tr>
<th>Intervention*</th>
<th>Adverse events</th>
<th>RR/OR (95% CI)</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>Renal failure</td>
<td>0.83 (0.50, 1.39)</td>
<td>CS<sup>72</sup></td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Myocardial infarction</td>
<td>2.5 (1.7, 3.6)</td>
<td>CC<sup>73</sup></td>
</tr>
<tr>
<td>H2 blocker + NSAID vs NSAID</td>
<td>Serious CV or renal events</td>
<td>1.09 (1.02, 1.15)</td>
<td>MA of CSs<sup>83</sup></td>
</tr>
<tr>
<td>PPI + NSAID vs NSAID</td>
<td>Serious CV or renal events</td>
<td>0.53 (0.08, 3.46)</td>
<td>MA of RCTs<sup>79</sup></td>
</tr>
<tr>
<td>Misoprostol + NSAID vs NSAID</td>
<td>Serious CV or renal events</td>
<td>0.78 (0.10, 6.26)</td>
<td>MA of RCTs<sup>79</sup></td>
</tr>
<tr>
<td>Misoprostol + NSAID vs NSAID</td>
<td>Serious CV or renal events</td>
<td>1.78 (0.26, 12.07)</td>
<td>MA of RCTs<sup>79</sup></td>
</tr>
<tr>
<td>COX-2 inhibitors</td>
<td>Serious CV or renal events</td>
<td>1.19 (0.80, 1.75)</td>
<td>MA of RCTs<sup>79</sup></td>
</tr>
<tr>
<td>Celecoxib</td>
<td>Myocardial infarction</td>
<td>2.26 (1.0, 5.1)</td>
<td>MA of RCTs<sup>84</sup></td>
</tr>
<tr>
<td>Rofecoxib</td>
<td>Myocardial infarction</td>
<td>0.97 (0.86, 1.08)</td>
<td>MA of CSs & CCs<sup>83</sup></td>
</tr>
<tr>
<td>Valdecoxib</td>
<td>CV events</td>
<td>2.3 (1.1, 4.7)</td>
<td>MA of RCTs<sup>86</sup></td>
</tr>
</tbody>
</table>

CV: cardiovascular; please see the footnotes of Table III for other abbreviations.

*Compared with placebo/non-exposure unless otherwise stated.
bias with under reporting of negative studies and conse-
quently overestimation of the benefits of topical NSAIDs.
This MA provided no trial evidence to support long-term
use of topical NSAIDs in knee OA but there was some het-
erogeneity of efficacy between preparations and a more
recent MA did demonstrate a small pooled effect
(ES\textsubscript{pain} = 0.28, 95% CI 0.14, 0.42)91. Overall topical
NSAIDs are safe with no more side effects than placebo89. GI side
effects are less likely than they are with oral
NSAIDs89,90 and there was no evidence that they could
be a cause of upper GI perforation or bleeds in a large
case–control study92 (Table III). However local reactions
such as itching, burning and rashes are more frequent89.
Topical capsaicin creams contain a lipophilic alkaloid ex-
tracted from chilli peppers which activates and sensitises peri-
pheral c-nociceptors by binding and activating the transient
receptor potential vanilloid type 1 (TRPV1) cation channel93. Paradoxically, although the application of capsaicin to the
skin causes burning pain at the site of application, it can
also be an effective topical analgesic which is recommended
as an alternative or adjunctive treatment for knee OA in 8/9
existing treatment guidelines where this modality of therapy
was considered4. Evidence for the efficacy of topical caps-
acin (0.025% cream × 4 days) in patients with knee OA is sup-
ported by an MA of RCTs of topical capsaicin in the treat-
ment of chronic painful conditions84,86 (LoE Ia). This included a single
placebo-controlled trial in 70 patients with knee OA86 as well
as two RCTs in patients with hand OA. The mean reduction in
pain was 33% with an NNT of 4 (95% CI 3, 5) after 4 weeks of
therapy but adequate binding is not possible in trials with this
agent. Treatment with topical capsaicin is safe but 40% of pa-
tients are troubled by local burning, stinging or erythema.

16. Intra-articular (IA) injections with corticosteroids
can be used in the treatment of hip or knee OA, and
should be considered particularly when pa-
tients have moderate to severe pain not responding
satisfactorily to oral analgesic/anti-inflammatory
agents and in patients with symptomatic knee OA
with effusions or other physical signs of local
inflammation.

SOR: 78% (95% CI 61–95)

IA injections of corticosteroids have been widely used as
adjunctive therapy in the treatment of patients with knee OA
for more than 50 years96, and are recommended as a treat-
ment option in 11/13 of existing treatment guidelines where
this modality of therapy was considered4. The efficacy of IA
steroid injections in patients with knee OA is well supported
by evidence from a 2005 Cochrane systematic review97
(LoE Ia), subsequently updated in 200698, which examined
data from 13 placebo-controlled RCTs. The ES for relief of
pain was in the moderate range (ES = 0.72, CI 0.42, 1.02)
with an NNT of 4 (95% CI 2.1, 11) at 2 and 3 weeks after in-
jection but function was not significantly improved
(ES = 0.06, 95% CI 0.17, 0.30) and evidence for relief of
pain 4 and 24 weeks post-injection was lacking97. Some
RCTs have demonstrated better outcomes in patients with
synovial effusions99 but others have not found that clinical
signs of inflammation or the presence of a joint effu-
sion100,101 are predictors of a good clinical response; sug-
gesting that IA steroid injections should not be restricted
to patients with physical signs of inflammation and/or joint
effusion. A single RCT102 in 42 patients with knee OA with
signs of inflammation showed that IA injections of 20 mg
of triamcinolone hexacetonide were superior to 6 mg of a be-
tamethasone acetate/bisodium phosphate combination for
the number of patients reporting pain reduction up to 4
weeks after injection (RR = 2, 95% CI 1.10, 3.63) but the
number of head to head comparisons between different IA
corticosteroid preparations is too few to support any evi-
dence-based recommendations for a particular preparation.

By contrast the evidence to support the recommendation
for IA steroid injection in patients with OA hip is mainly lim-
lited to two RCTs103,104 (LoE Ib) and two uncontrolled cohort
studies105,106. In one RCT an IA injection combining bupi-
caïne and triamcinolone did not give better pain relief than
IA injections of saline after 1 month (RR = 1.18; 95% CI
0.68, 2.15) or after 3 months (RR = 0.61, CI 0.23, 1.60); and
the combination containing IA steroid was not better
than injections of local anaesthetic alone in patients with
OA awaiting hip joint replacement105. A second RCT in 80
patients with severe symptomatic OA hip compared the ef-
fec ts of fluoroscopically controlled IA injection of 80 mg
triamcinolone hexacetonide or 1% mepivacaine and demon-
strated significant reduction in pain and improved mobility
after 3 weeks and 3 months in the steroid treated patients
but not in those treated with IA injections of local
anaesthetic104.

No serious adverse events were reported as a conse-
quence of IA steroid injections in 1973 patients in 28 con-
trolled trials in patients with OA knee96. Potential side
effects include post-injection flares of pain, crystal synovitis,
haemarthrosis, joint sepsis and steroid articular cartilage at-
rophy, as well as systemic corticosteroid effects such as
fluid retention or aggravation of hypertension or diabetes
mellitus. Emphasis has been placed on the importance of
accurate placement of IA injections to maximise benefit and
reduce the risk of adverse effects such as fat necrosis
and para-articular tissue atrophy107. There are limited data
at present to indicate how frequently it is safe to administer
IA steroid injections to patients with OA hip or knee. Most
experts recommend caution regarding too-frequent use; re-
peat injections more than four times annually are generally
not recommended.

17. Injections of IA hyaluronate may be useful in
patients with knee or hip OA. They are character-
ised by delayed onset, but prolonged duration, of
symptomatic benefit when compared to IA injec-
tions of corticosteroids.

SOR: 64% (95% CI 43–85)

Hyaluronic acid is a large molecular weight glycosami-
glycan which is a constituent of synovial fluid in normal and
osteoarthritic joints. IA injection of hyaluronan (HA), with
relatively high and low molecular weight averages, is widely
used, and recommended in 8/9 existing guidelines as a use-
ful therapeutic modality for treating patients with OA knee
as a viscosupplement or pharmaceutical4, despite consider-
able ongoing controversy with regard to its efficacy, cost-
effectiveness and benefit to risk ratio. The evidence
available to the OARSI treatment guidelines development
group from the critical appraisal of existing guidelines and
the systematic review of the research evidence from 2002
to January 2006 was derived from two systematic reviews
published in 2003108 and 2005109 (LoE Ia). The pooled
ES for reduction in pain at 2–3 months following at least
three IA injections at weekly intervals in 22 placebo-con-
trolled RCTs was 0.32 (95% CI 0.17, 0.47). There was,
however, significant heterogeneity between studies with in-
conclusive data to suggest that the higher molecular weight
HA preparations may be more effective106. An asymmetric
funnel plot and a positive Egger test also suggested the
possibility of publication bias; and the identification of two unpublished trials with a pooled ES of 0.07 (95% CI −0.15, 0.28) further suggested that the overall ES might have been overestimated106. The 2005 MA found no evidence of improvement in function in pooled pooled results from nine placebo-controlled RCTs which included joint function as an outcome (ES = −0.00, 95% CI −0.23, 0.23) and no effects on pain during movement compared with saline injections that were judged to be clinically meaningful at any time point after treatment109. Two further systematic reviews of IA injections of HA in patients with OA knee were published in 2006110,111. One MA of seven placebo-controlled RCTs which used the WOMAC or Lequesne indexes as outcome measurements found small but significant improvements in the Lequesne index, but not in the WOMAC scales for self-reported pain or disability up to 6 months after treatment109. A more comprehensive industry-sponsored Cochrane review which included an MA of 40 placebo-controlled trials with five different commercially available HA products found statistically significant improvements in pain on weight bearing when results were pooled (WMDs of −8, −13, −9 and −3 at 1–4, 5–13, 14–26 and 45–52 weeks, respectively), but improvements from baseline to the maximum at 5–13 weeks varied from 28% to 54% for pain and from 9% to 32% for function with different products111. In 10 trials comparing IA HA injections with IA corticosteroids there were no significant differences 4 weeks after injection but IA HA was shown to be more effective 5–13 weeks post-injection for one or more of a number of outcome variables (WOMAC OA index, Lequesne index, pain, range of flexion, and number of responders)110,111. No major safety issues were detected but in placebo-controlled trials adverse events such as transient pain at the injection site occurred slightly more frequently in patients treated with IA HA (RR = 1.08, 95% CI 1.01, 1.15)109. A recent study112 used the decision algorithm proposed by Jadad et al.113 and the GRADE (Grades of Recommendation Assessment, Development and Evaluation)114 system to explore the reasons for discordant conclusions in six published systematic reviews of IA HA for the treatment of OA knee108–111,115,116. The reasons for inconsistency identified included inclusion of different controlled trials as a result of different search strategies and selection criteria, differences in the outcome measures and time points selected for extraction; and different statistical methods for data synthesis, which resulted in conflicting estimates of therapeutic effect112. There is much less research evidence to support the proposition that IA injections of HA can be a useful treatment in patients with hip OA. Three quasi systematic reviews have examined the results of a number of uncontrolled clinical trials and case series117–119, a single comparison of injection of a low or high molecular weight HA120, and a single, double blind, three armed RCT in 101 patients with hip OA in which IA injections of a low molecular weight HA preparation were compared with IA saline and IA corticosteroid injections121. In the randomised comparison of three injections of high and low molecular weight HA given at weekly intervals under fluoroscopic control there were significant improvements of approximately 40% in VAS, WOMAC and Lequesne index scores 1, 3 and 13 weeks after treatment but no significant differences at any of the time points between the two groups106. However in the placebo-controlled trial in which three injections of HA, corticosteroid or saline were given with ultrasound guidance at 2 weekly intervals, there were no significant differences between the HA treated, corticosteroid treated or saline treated groups in pain on walking, WOMAC or Lequesne indices 14, 28 or 90 days after the course of injections121. Responses at 14 days applying OARSI response criteria were 53% in patients treated with HA, 56% in the corticosteroid treated group and 33% in the placebo-treated patients. At 28 days 53% responded to HA, 66% to corticosteroids and 44% to placebo121.

18. Treatment with glucosamine and/or chondroitin sulphate may provide symptomatic benefit in patients with knee OA. If no response is apparent within 6 months treatment should be discontinued. SOR: 63% (95% CI 44–82)

The aminosugar glucosamine and the glycosaminoglycan chondroitin sulphate are both naturally occurring constituents of cartilage proteoglycans that are very widely used as nutritional supplements by patients with OA. A crystalline preparation of glucosamine sulphate is approved as a medical product for the treatment of OA in many countries in Europe, Asia and Latin America. Glucosamine sulphate is recommended in 6/10 existing guidelines for the management of hip or knee OA, but chondroitin sulphate in only 2/7 guidelines where these modalities of therapy were considered122, and there is continuing controversy as to the efficacy of these agents as symptom modifying drugs.

Evidence available to the guideline development committee concerning the efficacy and safety of glucosamine was mainly derived from the 2005 update of the Cochrane systematic review and MA123 and an earlier MA published in 2003124 (LoE 1a). In comparisons with placebo, pooled analysis of 20 RCTs met the inclusion criteria the summary of ES for pain relief was 0.28, 0.95) and a 21% improvement in function using the Lequesne index (ES = 0.51, 95% CI 0.96, 0.05)123. However WOMAC pain, stiffness and function were not significantly changed and there was considerable heterogeneity of outcomes in different trials. With such marked heterogeneity, pooling of results may not be appropriate and estimates of overall ESs may be misleading. The possible reason(s) for the variation in outcomes also requires an explanation. In 10 placebo-controlled RCTs in which the Rottapharm preparation of glucosamine sulphate 1500 mg daily was used there were significant improvements in pain (ES = 1.31, 95% CI 0.64, 1.99) and function (ES = 0.51, 95% CI 0.05, 0.96) while there were no significant improvements in WOMAC pain or function indices in the pooled results of RCTs that used other glucosamine formulations123. Analysis of the eight RCTs in which allocation concealment was considered adequate also failed to show drug efficacy for relief of pain or improvement in function using the WOMAC index123. A more recent systematic review was undertaken specifically to try and identify the factors that might be responsible for the heterogeneity of outcomes in trials of glucosamine125. In 15 RCTs which met the inclusion criteria the summary of ES for pain relief was 0.35 (95% CI 0.14, 0.56) but there was a considerable variation in outcomes attributable to differences between studies, rather than to chance124, with an I² of 80% (i.e., 80% of the inconsistency could be attributed to the true differences between studies). An Egger test and funnel plot90 did not suggest publication bias and there were no clear indications that the heterogeneity was attributable to differences in trial design, trial quality, the number of drop-outs or differences in intention to treat analyses, but the differences in adequacy of the allocation concealment detected in the Cochrane review122 were confirmed. The
most striking differences, however, seemed to be related to the glucosamine preparation that was used. The ES for trials which used glucosamine sulphate was 0.44 (95% CI 0.18, 0.70) compared with 0.06 (95% CI −0.08, 0.20) for those that used glucosamine hydrochloride, and the ES for trials utilising the Rottapharm preparation of glucosamine sulphate was 0.55 (95% CI 0.29, 0.82) compared with an ES of 0.11 (95% CI −0.16, 0.38) for trials with other products. The possibility of industry bias as an additional or alternative explanation for the heterogeneity of outcomes between glucosamine trials was also suggested, but not substantiated. In the first part of this report it was shown that sensitivity analysis following addition of the data from two large multicentre RCTs which were published after the close of the systematic review in January 2006; the NIH sponsored Glucosamine/chondroitin Arthritis Intervention Trial (GAIT) in which glucosamine hydrochloride was used, and the Glucosamine Unum in Die Efficacy (GUIDE) trial in which glucosamine sulphate 1500 mg daily was employed, to the main body of trial outcomes, did not alter the ESs for pain efficacy significantly. The NNT for treatment of knee OA with glucosamine sulphate is 5 (95% CI 4, 7) and treatment is not associated with any serious adverse effects.

The evidence supporting the recommendation that chondroitin sulphate may provide symptomatic benefit in patients with knee OA is also conflicting. At the time of the Delphi exercise the evidence for efficacy of chondroitin sulphate was supported by two MAs published in 2000 and a third in 2003 (LoE Ia). Analysis of eight RCTs involving 755 patients showed a moderate ES for pain reduction (ES = 0.52, 95% CI 0.37, 0.67) with an NNT of 5 (4, 7) and no evidence of serious side effects. However, as shown in the first part of this report, sensitivity analysis following addition of the data from the GAIT study to the main body of trial outcomes reduced the ES for pain reduction significantly (ES = 0.30, 95% CI −0.10, 0.70) and suggested that treatment with chondroitin sulphate was not significantly more effective than placebo. This was also the conclusion of the most recent systematic review and MA. In their analysis of 20 trials involving 3846 patients the ES for pain relief was large (ES = 0.75, 95% CI 0.50, 0.99) but they identified very marked heterogeneity of outcomes between trials with an I^2 of 92%. Small trials with poor quality features such as uncertain concealment of allocation and a failure to analyse results on an intention to treat basis showed larger effects in favour of chondroitin than did the remaining trials. Similar caveats had been raised in one of the earlier MAs. When Reichenbach et al. restricted the analysis to three recent trials with large sample sizes and an intention to treat analysis, the ES for pain reduction was only 0.03 (95% CI −0.07, 0.13) with an I^2 of 0% However, this restricted analysis included one study with an exceptionally high placebo response rate, one study that was only published as an abstract and only 40% of all trial patients. The pooled RR for adverse events in an MA of 12 placebo-controlled trials was 0.99 (95% CI 0.76, 1.21).

19. In patients with symptomatic knee OA glucosamine sulphate and chondroitin sulphate may have structure-modifying effects while diacerein may have structure-modifying effects in patients with symptomatic OA of the hip. SOR: 41% (95% CI 20–62)

Evidence that glucosamine sulphate 1500 mg/day may have structure-modifying effects in patients with knee OA comes from two placebo-controlled RCTs involving 414 patients and two systematic reviews and MAs. In one trial there was no radiographic loss of joint space width (JSW) in the medial compartment of the tibiofemoral joint after 3 years (mean −0.06 mm, 95% CI −0.22, 0.09) in the treated patients compared with progressive loss in the placebo group (mean −0.31 mm, 95% CI −0.48, −0.13). The pooled results of both trials showed an ES = 0.24 (95% CI 0.04, 0.43).

The proposition that chondroitin sulphate (800 mg/day) may also have structure-modifying effects is supported by an MA of five placebo-controlled RCTs. The difference in changes over 2 years between chondroitin and placebo demonstrated a small effect in favour of chondroitin: 0.16 mm on minimum JSW (95% CI 0.08, 0.24) and 0.23 mm on mean JSW (95% CI 0.09, 0.37) (LoE Ia).

The evidence to support the proposition that diacerein may have structure-modifying effects in patients with hip OA comes from a single 3-year placebo-controlled RCT in 507 patients with primary hip OA and a systematic review and MA (LoE Ia). In patients who completed 3 years of therapy with diacerein 50 mg twice daily the rate of joint space narrowing was [mean ± standard deviation (SD)] 0.18 ± 0.25 mm/year vs 0.23 ± 0.23 mm/year with placebo ($P = 0.042$). Similar structure-modifying effects were not evident in a 1-year placebo-controlled RCT in patients with knee OA.

20. The use of weak opioids and narcotic analgesics can be considered for the treatment of refractory pain in patients with hip or knee OA, where other pharmacological agents have been ineffective, or are contraindicated. Stronger opioids should only be used for the management of severe pain in exceptional circumstances. Non-pharmacological therapies should be continued in such patients and surgical treatments should be considered. SOR: 82% (95% CI 74–90)

The use of opioid analgesics is recommended in 9/9 existing treatment guidelines for the management of hip or knee OA. A number of systematic reviews and MAs of the use of opioids for chronic non-cancer pain, musculoskeletal pain and more recently OA have provided evidence of efficacy and acceptable safety in short-term trials (LoE Ia). Analysis of 18 placebo-controlled RCTs including 3244 patients with OA showed a moderate ES for reduction in pain intensity (ES = 0.78, 95% CI 0.59, 0.98) but there was substantial heterogeneity between studies which was not obviously related to the opioid preparation that was used or the methodological quality of the RCTs. The median duration of trials was 12 weeks (range 1.4–72 weeks). Analysis of five placebo-controlled RCTs which included 1429 OA patients receiving opioids showed a small effect on improvement in physical function (ES = 0.31, 95% CI 0.24, 0.39). Benefits associated with the use of opioids were, however, limited by frequent side effects; nausea (30%), constipation (25%), dizziness (20%), somnolence (18%) and vomiting (13%). Overall 25% of patients treated with opioids withdrew from studies compared with 7% of placebo-treated patients with a number needed to harm (NNH) of 5. The withdrawal rate for strong opioids (oxymorphine, oxycodone, oxirtex, fentanyl, morphine sulphate) was 31% (NNH 4) compared with a withdrawal rate of 19% and an NNH of 9 for the weaker opioids (tramadol, tramadol/paracetamol, codeine
and propoxyphene142. This MA142 did not allow any conclusions concerning comparisons of the efficacy or safety of opioids and other available analgesics such as paracetamol or NSAIDs because of the very limited number of head to head trials. However, another MA of opioids for chronic non-cancer pain, including OA, demonstrated that only strong opioids were significantly more effective than paracetamol or NSAIDs (ES = 0.34, 95% CI 0.01, 0.67)140. A systematic review conducted a decade earlier had, however, confirmed that paracetamol–codeine combinations did provide a small (approximately 5%) but statistically significant analgesic benefit when compared with paracetamol alone, but adverse effects were more frequent (RR = 2.5, 95% CI 1.5, 4.2)143. All the systematic reviews highlight the fact that there have been no long-term trials of the use of opiates for treating patients with OA139,142. This is obviously relevant because of ongoing concerns about the risks of dependence or addiction to opiates144. While in the USA there is evidence that the use of opioids for the management of chronic musculoskeletal pain doubled (RR = 2.0, 95% CI 1.52, 2.48) and the use of potent opioids more than quadrupled (RR = 4.5, 95% CI 2.18, 6.87) between 1980 and 2000145, a survey of primary care physicians in the UK published in 2006 suggested that as many as 25% never prescribed opioids for patients with persistent non-cancer related pain146 and this was mainly determined by personal beliefs about the appropriateness of prescribing opioids in these circumstances, rather than evidence-based guidelines146.

21. Patients with hip or knee OA who are not obtaining adequate pain relief and functional improvement from a combination of non-pharmacological and pharmacological treatment should be considered for joint replacement surgery. Replacement arthroplasties are effective, and cost-effective interventions for patients with significant symptoms, and/or functional limitations associated with a reduced health-related quality of life, despite conservative therapy.

SOR: 96% (95% CI 94–98)

Total hip arthroplasty (THA) and knee joint arthroplasty (TKA) are universally recommended in 14/14 existing treatment guidelines2, and generally accepted as reliable and appropriate surgical procedures to restore function and improve health-related quality of life in patients with hip and knee OA who are not obtaining adequate pain relief and functional improvement with a combination of pharmacological and non-pharmacological treatments147,148. As ethical and methodological considerations have precluded evaluation of total joint replacement with RCTs, evidence to support their efficacy is based substantially on numerous uncontrolled observational studies and a very small number of cohort studies where outcomes have been compared with standard medical care (LoE III). These are well summarised in a 2004 qualitative and systematic review of the scientific literature relating to health-related quality of life outcomes following THA and TKA149. This analysis of the outcomes in 74 arthroplasty studies (32 hip and knee, 26 THA and 16 TKA alone) involving many thousands of patients with OA. The Short Form-36 (SF-36) (40 studies) and the WOMAC index (28 studies) were the instruments most frequently employed. Most studies reported on post-operative outcomes up to 6 or 12 months but there were some data on clinical outcomes up to 7 years following surgery. All studies reported substantial improvements in pain and physical functioning but the effects on mental health and social functioning were more variable150. Pain scores improved more quickly and more dramatically than physical functional outcomes with maximal improvements in the first 3–6 months150. An earlier systematic review of outcomes following THR with different types of prosthesis in 118 uncontrolled studies involving 77,375 patients with a mean follow up of 9.4 years (range 2–20 years) found that 43% (95% CI 34, 49) to 84 (95% CI 46, 100) were free from pain, depending on the type of prosthesis used. Revision rates ranged from 0.18 (S.E.M. 0.04) to 2.04 (S.E.M. 0.19)/100 person years150. MA of functional outcomes following unicompartment151, bicompartiment151 and tricompartment152 knee arthroplasty showed mean improvements in a global knee score, incorporating pain, function and range of motion, of 63%, 93%, and 100%, respectively, 4–6 years after surgery. Cumulative revision rates at 10 years following THA and TKA for OA hip and knee were 7%153 and 10%154 respectively.

A number of studies have shown that quality of life indices following THA approximate to those in the age and gender matched population155–157 a year after surgery. Overall THA is more effective than TKA in restoring patients with hip or knee OA to normal function and age is not an obstacle to effective surgery156. However higher age, more pre-operative pain, musculoskeletal co-morbidities such as low back pain, and OA in the non-operated hip, predict a poorer outcome following THA158. More severe pain, functional limitation, low mental health scores and medical co-morbidities have also been shown to predict a poorer outcome following TKA159. Following development and evaluation of explicit criteria for the appropriateness of indications for THA160 and TKA161, based on a method that combines expert opinion with available scientific evidence162, it has recently been demonstrated that physical and social functions as assessed by the SF-36 and WOMAC instruments improved to a significantly greater extent following THA and TKA in patients where the indications for surgery were appropriate163. THA and TKA were shown to be more cost-effective treatments for the management of hip and knee OA than current pharmacological modalities of therapy in the first part of this report164. The most recently published data suggest that the cost per QUALY gained from TK (13995 Euros) is twice that gained from THA (6710 Euros)164.

22. Unicompartmental knee replacement is effective in patients with knee OA restricted to a single compartment.

SOR: 76% (95% CI 64–88)

Approximately one third of patients with knee OA have unicompartmental disease that is largely restricted to a single compartment165. In approximately 30% of these patients with unicompartmental knee OA the medial compartment is affected, in 3% it is the lateral compartment and in 69% the disease predominantly involves the patello-femoral joint165. Evidence supporting the efficacy of unicompartmental knee arthroplasty (UKA) in patients with knee OA restricted to a single compartment is summarised in a recent systematic review of nine studies comparing UKA with TKA166. This included one RCT167 (LoE Ib), six concurrent non-randomised trials (LoE IIa) and two retrospective comparative studies with historical controls (LoE III). Knee pain and function were comparable 5 years after UKA and TKA but range of movement was better after UKA166. Complication rates were similar following both procedures but prosthesis...
survival following UKA was 85–90% at 10 years compared with >90% for TKA.

23. Osteotomy and joint preserving surgical procedures should be considered in young adults with symptomatic hip OA, especially in the presence of dysplasia. For the young and physically active patient with significant symptoms from unicompartmental knee OA, high tibial osteotomy may offer an alternative intervention that delays the need for joint replacement some 10 years. SOR: 75% (95% CI 64–86)

Osteotomy is recommended as a modality of treatment in 10/10 existing guidelines for the management of hip or knee OA where this was considered. Intertrochanteric varus or valgus osteotomy has been used as a treatment for hip OA for nearly a century and pelvic or femoral osteotomies are widely advocated to correct the biomechanics and joint congruency in young patients with hip dysplasias before the development of symptomatic hip OA. Evidence to support the efficacy of these procedures is limited to analysis of clinical outcomes in three uncontrolled prospective and nine retrospective cohort studies (LoE III). High tibial osteotomy was promulgated as a treatment for knee OA in the 1960s. The biomechanical rationale for the operation, that realignment of the varus deformity would reduce stress on the medial compartment of the knee by redistributing the weight of the body from the arthritic medial compartment to the healthy lateral compartment, was challenged by a study that demonstrated that while 25° of valgus angulation were required to unload the medial compartment of the joint, optimal clinical results were associated with corrections of only 6–14°. The hypothesis that high tibial osteotomy may offer an alternative intervention that can delay the need for joint replacement for some 10 years is supported to some extent by an MA of 2406 osteotomies in 19 uncontrolled cohort studies (LoE III). Knee arthroscopy does have very powerful placebo effects and the investigators emphasised, as have others, that the power of placebo should never be underestimated. Although much of the controversy that followed the publication of this study related to the ethical and practical issues of undertaking blinded placebo-controlled trials of surgical procedures, it was also criticised on methodological grounds relating to the design of the study, the documentation of clinical and operative features, the outcome measures employed and the statistical analysis, as well as a failure to undertake a subset analysis to see whether any subgroups of patients who were deriving benefit from arthroscopic debridement were being lost in the pooled analysis. A recent review of published studies concluded that there was some evidence to suggest that arthroscopic debridement of meniscus tears in patients with OA and arthroscopic debridement of knees with low-grade OA may have limited utility (LoE IV). Knee arthroplasty has been extensively used in the treatment of OA knee for more than 70 years, and joint lavage is currently recommended as useful treatment for patients with knee OA in 3/3 treatment guidelines where this modality of therapy was considered. However, controversy regarding the efficacy and indications for these procedures in the management of knee OA continues. For many years evidence for the efficacy of arthroscopic joint lavage and debridement in knee OA rested on the clinical outcomes observed in uncontrolled cohorts as is the case for the majority of surgical interventions (LoE III). In such studies 50–80% of patients were typically recorded as having decreases in knee pain lasting from 1 to 5 years. One RCT, which compared articular debridement and lavage alone in 76 knees with medial compartment knee OA, found that 80% of the debridement group and 14% of the washout group were pain free at 1 year, with 59% of the debridement group and 12% of the washout group remaining free from knee pain after 5 years (LoE Ib). A second prospective comparative study compared arthroscopic debridement with non-operative medical treatment in 70 patients. After 2 years 75% of the operated patients and 16% of the medically treated patients had improvements using the HSS knee rating score. Both demonstrated statistically significant reduction in pain in the lavage group at 3 months, and this was still evident at 1 year in the latter trial (LoE Ia). A recent RCT, which compared radial knee irrigation with standard medical therapy (LoE Ib), demonstrated statistically significant reduction in pain in the irrigation group at 3 months, and this was still evident at 1 year in the latter trial (LoE Ib). However, a good quality, placebo-controlled RCT in which 180 patients with knee OA were randomly assigned to receive arthroscopic debridement, arthroscopic lavage, or placebo (sham) surgery with a skin incision and simulated arthroscopy showed no significant differences between the groups in the primary end point (pain on a self-reported 12-item knee specific pain scale) at 24 months, or in any of the other secondary outcome measures of pain and function at any time point. The ESs for pain and function were 0.09 (95% CI −0.27, 0.44) and −0.10 (95% CI −0.45, 0.26) for arthroscopic lavage, and −0.01 (95% CI −0.37, 0.35) and −0.09 (95% CI −0.27, 0.45) for arthroscopic debridement. This is one of only a very few placebo-controlled RCTs of surgical procedures in which sham surgery has been undertaken. Clearly, surgery does have very powerful placebo effects and the investigators emphasised, as have others, that the power of placebo should never be underestimated. Although much of the controversy that followed the publication of this study related to the ethical and practical issues of undertaking blinded placebo-controlled trials of surgical procedures, it was also criticised on methodological grounds relating to the design of the study, the documentation of clinical and operative features, the outcome measures employed and the statistical analysis, as well as a failure to undertake a subset analysis to see whether any subgroups of patients who were deriving benefit from arthroscopic debridement were being lost in the pooled analysis. A recent review of published studies concluded that there was some evidence to suggest that arthroscopic debridement of meniscal tears in patients with OA and arthroscopic debridement of knees with low-grade OA may have limited utility (LoE IV). Knee arthroscopy was associated with corrections of only 6–14°.

24. The roles of joint lavage and arthroscopic debridement in knee OA are controversial. Although some studies have demonstrated short-term symptom relief, others suggest that improvement in symptoms could be attributable to a placebo effect. SOR: 60% (95% CI 47–82)

Arthroscopic debridement, a procedure that variably includes joint lavage, the removal of loose bodies, debris, mobile fragments of articular cartilage, unstable torn menisci and impinging osteophytes, has been extensively used in the treatment of OA knee for more than 70 years, and joint lavage is currently recommended as useful treatment for patients with knee OA in 3/3 treatment guidelines where this modality of therapy was considered. However, controversy regarding the efficacy and indications for these procedures in the management of knee OA continues. For many years evidence for the efficacy of arthroscopic joint lavage and debridement in knee OA rested on the clinical outcomes observed in uncontrolled cohorts as is the case for the majority of surgical interventions (LoE III). In such studies 50–80% of patients were typically recorded as having decreases in knee pain lasting from 1 to 5 years. One RCT, which compared articular debridement and lavage alone in 76 knees with medial compartment knee OA, found that 80% of the debridement group and 14% of the washout group were pain free at 1 year, with 59% of the debridement group and 12% of the washout group remaining free from knee pain after 5 years (LoE Ib). A second prospective comparative study compared arthroscopic debridement with non-operative medical treatment in 70 patients. After 2 years 75% of the operated patients and 16% of the medically treated patients had improvements using the HSS knee rating score. Both demonstrated statistically significant reduction in pain in the lavage group at 3 months, and this was still evident at 1 year in the latter trial (LoE Ib). However, a good quality, placebo-controlled RCT in which 180 patients with knee OA were randomly assigned to receive arthroscopic debridement, arthroscopic lavage, or placebo (sham) surgery with a skin incision and simulated arthroscopy showed no significant differences between the groups in the primary end point (pain on a self-reported 12-item knee specific pain scale) at 24 months, or in any of the other secondary outcome measures of pain and function at any time point. The ESs for pain and function were 0.09 (95% CI −0.27, 0.44) and −0.10 (95% CI −0.45, 0.26) for arthroscopic lavage, and −0.01 (95% CI −0.37, 0.35) and −0.09 (95% CI −0.27, 0.45) for arthroscopic debridement. This is one of only a very few placebo-controlled RCTs of surgical procedures in which sham surgery has been undertaken. Clearly, surgery does have very powerful placebo effects and the investigators emphasised, as have others, that the power of placebo should never be underestimated. Although much of the controversy that followed the publication of this study related to the ethical and practical issues of undertaking blinded placebo-controlled trials of surgical procedures, it was also criticised on methodological grounds relating to the design of the study, the documentation of clinical and operative features, the outcome measures employed and the statistical analysis, as well as a failure to undertake a subset analysis to see whether any subgroups of patients who were deriving benefit from arthroscopic debridement were being lost in the pooled analysis. A recent review of published studies concluded that there was some evidence to suggest that arthroscopic debridement of meniscal tears in patients with OA and arthroscopic debridement of knees with low-grade OA may have limited utility (LoE IV). Knee arthroscopy was associated with corrections of only 6–14°.

25. In patients with OA of the knee, joint fusion can be considered as a salvage procedure when joint replacement has failed. SOR: 69% (95% CI 57–82)

The most common indication for knee arthrodesis in patients with knee OA is severe pain and instability in an unreconstructable knee following an infection at the site of a previous knee arthroplasty. Although success rates with primary and revision arthroplasty have improved considerably in the last two decades knees with substantial metaphyseal bone loss, inadequate ligamentous restraints, multiple failed revisions, inadequate soft-tissue coverage with loss of extensor mechanism and infection with virulent organisms should also be considered, as should patients with serious medical co-morbid disease (LoE IV). Knee arthroplasty was associated with corrections of only 6–14°
fusion is recommended as a salvage procedure when joint replacement has failed in both the existing guidelines that considered this modality of treatment. Evidence of outcomes following knee arthrodesis is largely based on information from uncontrolled retrospective cohort studies (LoE III). However a comprehensive review and MA of studies published in 1995 reported successful fusions in 94.6% of cases following intramedullary nailing compared with 63.6% when external fixators were used. In one small comparison of nine OA patients who had undergone knee arthrodesis with nine who had a primary TKA, SF-36 scores for pain, health, vitality, social and emotional well-being were similar in the two groups, although the arthroplasty treated patients scored higher for physical functioning.

The Arthritis Impact Measurement Score (AIMS) was also better after arthroplasty because of increased mobility (0.97 vs 2.5 points) and physical activity (4 vs 6.3 points) but patients with an arthrodesis had a better mean score on the pain scale (3.3 vs 3.9). In general following knee arthrodesis patients can expect a stable painless leg with some functional difficulties with climbing stairs and with sitting in a theatre or an aeroplane.

Contraindications to knee arthrodesis include an arthrodesis of the contralateral hip or knee and significant OA in the ipsilateral hip or ankle. All patients can expect some shortening of the leg (2.5–6.4 cm) and complications may occur in up to 50% of patients. These include peroneal nerve palsy, pain associated with migration of the metal nail, thrombophlebitis and, rarely, non-union.

Discussion

SCOPE AND PURPOSE

The OARSI treatment guidelines have been developed to provide evidence-based, expert consensus recommendations for the management of hip and knee OA, which are current, patient-focused, and globally relevant. Although their primary purpose is to provide assistance to physicians and allied health care professionals in both general and specialist practice, it is anticipated that the guidelines will also provide an authoritative source of information about options for the management of OA hip or knee for patients, and for those involved in the funding and administration of health care. It is also anticipated that these OARSI international core recommendations will be modified and adapted as appropriate for National and Regional application, and for use by health care professionals in different specialist settings.

The systematic review of existing guidelines and recent research evidence for the treatment of OA of the hip and/or knee, which formed the first part of the OARSI exercise, identified a ‘core set’ of 20 treatment modalities which were universally recommended in 23 evidence-based and/or expert consensus guidelines from around the world. Critical appraisal of these guidelines suggested that overall quality was sub-optimal and that consensus recommendations were not always supported by the best available clinical evidence. The appraisal suggested that there was a need for updated guidelines; and that hybrid guidelines combining expert opinion with research evidence were most likely to fulfil high quality standards. However the quality of such hybrid guidelines ultimately reflects not only the quality of the systematic review of the research evidence, but also the experience, expertise and judgement of the experts charged with producing them. It has been suggested that treatment guideline development groups should be multidisciplinary, and ideally should include representatives from all stakeholder groups whose professional activities or interests are under consideration.

In order to approach this requirement the OARSI Treatment Guideline Committee was made up of 16 experts from four medical disciplines (primary care 2, rheumatology 11, orthopaedic surgery 1 and evidence-based medicine 2) from two continents and six countries (Canada, France, Netherlands, UK and USA). ACR guidelines for the medical management of OA of the hip or knee were developed by four US rheumatologists, and the most recent EULAR recommendations for the management of hip OA were developed by 23 experts from departments of rheumatology and orthopaedics from 14 countries limited to Europe. These and other existing guidelines have been variously criticised for lack of methodological rigour, editorial independence and applicability as well as for inadequate stakeholder involvement.

Details of the methodology for undertaking the systematic search for existing guidelines, and the quality and content assessment and data analyses that led to the critical appraisal of the 23 existing guidelines have been presented and discussed in detail in the first part of this report, as have the methodological details of the systematic review of the scientific evidence from 2002 to 2006 and the quality and outcome assessments for efficacy, side effects and cost-effectiveness. So too have the sensitivity analyses that were undertaken to determine whether selected RCTs published after January 31st 2006 would alter any of the evidence-based conclusions from the critical appraisal of existing guidelines and the systematic review of the recent research evidence significantly.

A Delphi exercise was undertaken to generate consensus recommendations. This followed the approach adopted during the development of the EULAR guidelines for the treatment of knee and hip OA with some important differences. In the development of the EULAR recommendations expert consensus on only 10 key treatment propositions, preceded the systematic search for research evidence; a process that we have characterised as clinically driven and evidence-supported. By contrast during the development of the OARSI recommendations the results of the systematic review of the research evidence and the critical appraisal of existing guidelines were made available to the guideline development committee before they embarked on the Delphi exercise, a process that we have characterised as evidence-driven and clinically supported. No restriction was placed on the number of treatment propositions or recommendations to be considered and eventual consensus was reached on the recommendation of 25 carefully worded propositions after six Delphi rounds. These treatment propositions encompass all of the 20 modalities of therapy which were universally recommended in existing guidelines and all but four of the modalities of treatment for which there was agreement in between 25% and 100% of existing guidelines.

STAKEHOLDER CONSULTATION

Stakeholder involvement is one of the key criteria in the appraisal of clinical guidelines. In order to obtain feedback and suggestions from potential users of the recommendations during the process of guideline development two consultation steps were included. Such consultation with potential guideline users, which is, for example, always included during the development of treatment guidelines by the Scottish Intercollegiate Guidelines Network (SIGN) serves to help generate a sense of involvement and ownership among potential users as well as generating valuable feedback and suggestions for the committee concerning
alternative interpretations of the research evidence. The first of these consultation steps, described in detail in the first part of this report, was a pilot survey of the perceived usefulness of the treatment modalities addressed in existing guidelines among physicians and other health professionals attending a New York University — OARSI Rheumatology Symposium in New York City in 2006. Although the number of participants was small, the range of health professionals limited and the majority of those surveyed were from the USA, the views expressed concerning the usefulness of various modalities of treatment were found to be consistent with those generated by the critical appraisal of the existing guidelines that led to the definition of a core set of recommended treatment modalities. The second and more comprehensive public consultation step was conducted after four rounds of the Delphi exercise had generated provisional consensus on 44 propositions. These were posted on the OARSI website and presented for comment and discussion by OARSI members at a plenary session of the World Congress on OA in Prague in December 2006. Suggestions from OARSI members were considered by the guideline committee prior to further additions, amalgamations, minor rewording and two final Delphi rounds, which ultimately led to consensus on the 25 carefully worded propositions.

INTERPRETATION OF LOE, ES AND SOR

The type of research evidence that is considered optimal or admissible when undertaking systematic reviews varies according to the type of clinical question that is being addressed. While a prospective cohort study may be the most appropriate type of study to assess the importance of a risk factor for disease causation or progression, RCTs are regarded as the gold standard for assessing the efficacy of therapeutic interventions. Evidence hierarchies, such as the one used in this study (Table II), are recommended and widely used, to grade the level of evidence during the development of treatment guidelines. Such methods for grading strength of recommendations are however, problematic. Although they do allow guideline developers to include consideration of the research evidence, they are strongly driven by the evidence hierarchy for efficacy and always downgrading highly effective treatments such as total joint replacements, which are not readily assessable by RCT, because of practical and ethical considerations. To overcome this problem, the EULAR OA task force and a multidisciplinary UK panel developed an integrated approach in which SOR, based on both the LoE and clinical expertise is recorded on a VAS. While this approach, which was adopted in the development of the OARSI recommendations, allows decision-making based on the balance between research evidence and clinical practice, so that the SOR reflects the overall clinical effectiveness of the therapy in question. Secondly, SORs which are predominantly based on an evidence hierarchy for clinical efficacy may not adequately encompass adverse effects or truly reflect the trade-off between risk and benefit which is fundamental for making clinical decisions. In addition, traditionally graded SORs are recorded on categorical scales. The use of a VAS based SOR has the advantage of allowing the calculation of 95% CIs as well as mean values, so enabling users to better estimate the precision of the SOR for any particular recommendation.

The value of using the VAS SOR with 95% CI to reflect the balance between research evidence and clinical expertise is well illustrated in two of the OARSI recommendations. The SOR for joint replacement in patients with hip and knee OA (proposition 21) was 96% with very narrow 95% CI (94—98) despite only grade III research evidence, reflecting the excellent trade-off between harms and benefits for these procedures, and the strong consensus among the experts. By contrast the SOR for IA injections of hyaluronate in patients with OA knee or hip (proposition 17) was only 64% with wide 95% CI (43—85), despite IA evidence for efficacy of pain relief from some published metaanalyses. Presumably this reflected a range of expert opinion as a consequence of conflicting evidence of efficacy in RCTs and MAs of this modality of therapy, as well as consideration of the cost, convenience and overall risk/benefit ratio. Effect size is a measure of standard mean difference between treatments (e.g., treatment vs placebo) in units of the SD of the difference. When conducting MAs it is common practice to normalise the same, or different outcome measures, across different studies. This allows cross-study comparisons and statistical pooling of the results from different studies. However, ES is a derived outcome developed for research purposes which reflects change as an SD of change, but lacks the numerical measurement of the outcome that was actually assessed (e.g., % pain reduction on a 0—100 mm VAS). Unlike outcome measures themselves or the NNT, the interpretation of ES in clinical practise is not an easy one to communicate clearly to health administrators, health professionals or patients. Great care must be taken when attempting to compare ES across treatments, e.g., electromagnetic therapy (ES = 0.77, 95% CI 0.36, 1.17) vs NSAIDs (ES = 0.32, 95% CI 0.24, 0.39) for osteoarthritic pain. Conclusions based on such comparisons of ES may be dangerous and invalid without further examination of some aspects of the therapy, such as number of studies included in the MAs, the characteristics of the patients included and the comparators that have been used. Potential users of the OARSI guidelines are, therefore, strongly advised to examine the 95% CIs between treatments before coming to any conclusions about comparisons of ESs.

THE CONCEPT OF A CORE SET OF RECOMMENDATIONS: COMPARISON WITH OTHER GUIDELINES

Attempts have been made to define core sets for OA within the International Classification of Functioning, Disability and Health (ICF) and an International Classification of Health Interventions has been proposed by the World Health Organisation (WHO). There are, however, currently no generally accepted core sets of treatments for patients with OA. In the first part of this report we were able to identify 20 modalities of therapy for OA hip and/or knee which were universally recommended in existing guidelines. These comprised eight non-pharmacological modalities (education, self-management, regular telephone contact, aerobic, muscle strengthening and water-based exercises, referral to a physical therapist and the use of a cane or stick); six pharmacological modalities (acetaminophen, NSAIDs, both non-selective with co-prescription of a PPI or misoprostol and selective COX-2 inhibitors, opioids and herbal preparations); five surgical modalities (total joint replacements, osteotomy, knee fusion and knee aspiration/joint lavage) as well as the combination of non-pharmacological and pharmacological treatments. With some carefully worded caveats all of these modalities of therapy are included in the current OARSI recommendations which have been developed by a multinational, multidisciplinary group of experts from primary and secondary care after evaluation of the critical appraisal of existing treatment guidelines and a systematic review of the recent research evidence, with the exception of herbal
treatments (Table I). In addition there was a consensus for treatment recommendations, with caveats, based on four non-pharmacological modalities (weight loss, shoe insoles, knee braces, TENs), four pharmacological (oral and topical NSAIDs, topical capsaicin and IA injections of corticosteroids and hyaluronate) and one surgical modality (arthroscopic debridement) which are recommended in 75% of existing guidelines; for acupuncture, thermal modalities and glucosamine sulphate recommended in 50%, and for chondroitin sulphate recommended in 25%. However, the SOR was only >90% in 8/25 of the carefully worded treatment propositions relating to five non-pharmacological modalities of therapy (education/self-help, exercise, weight reduction and the use of walking aids); one pharmacological modality (acetaminophen) and one surgical modality of treatment (total joint replacement) in addition to the general recommendation to combine pharmacological and non-pharmacological treatments.

LIMITATIONS

The OARSI guidelines have some limitations. Although the guideline development committee was multinational and multidisciplinary it only included experts from Europe and North America and 11/16 of its members were rheumatologists. Primary care physicians and orthopaedic surgeons were underrepresented. Although there were no experts from allied health professions such as nursing or physiotherapy, efforts were made to obtain the views of other health professionals through the questionnaires survey at the New York – OARSI Symposium and the collection of comments from the wider OARSI membership through posting the draft recommendations on the OARSI website and public presentation and discussion of the draft guidelines at the World Congress on OA in December 2006. Unfortunately patients’ perspectives on the recommendations remain unknown. Secondly, due to time constraints, only the scientific literature from 2002 to 2006 was systematically reviewed. Evidence before 2002 was obtained from the EULAR systematic review, and it was not possible to combine the data from the two systematic reviews because of discrepancies in methodology and the scope of the guidelines. Thirdly, a number of new studies have been published after the closing date of our literature search (Jan 2006). These include some studies of chondroitin sulphate 131-133, weight reduction 138, diacerein 139-142, and vascular risk of NSAIDs and coxibs 187,217-219. Whether any of this more recently published data would change the calculated evidence parameters significantly and whether they will have any impact on the current OARSI recommendations remains to be determined. Finally, the Delphi exercise had to be arbitrarily terminated after the sixth round when it had become clear that consensus to accept or reject two propositions [one for diacerein and the other for avocado-soybean unsaponifiables (ASU)] was not possible despite attempts at rewording or amalgamation with treatment propositions that had already been accepted. There was limited support (>20% but <60% voting) for propositions stating that diacerein and ASU may provide slow acting symptomatic benefit in patients with knee or hip OA.

The evidence for symptomatic efficacy of diacerein in patients with OA hip or knee available to the OARSI Treatment Guidelines Development group from the systematic review of the research evidence from 2002 to January 2006 came from four RCTs with heterogeneous results 138,220-222 (LoE Ib). The ES pan was small (0.22, 95% CI 0.01, 0.42) and the RR for diarrhoea was 3.98 (95% CI 2.90, 5.47) 4. Some symptomatic efficacy of diacerein was suggested by a more recently published RCT 222 and two MAs 137,216, but the first of these raised concerns about the heterogeneity of outcomes and the possibility of publication bias 137, and the latter 216 was criticised for omitting the results of analyses for heterogeneity and for possible bias resulting from industry support 224.

The evidence for symptomatic efficacy of ASU in patients with OA hip or knee available to the OARSI Treatment Guidelines Development group from the systematic review of the research evidence from 2002 to January 2006 came from a systematic review of four RCTs, three out of four of which showed some evidence of efficacy for relief of pain in OA hip and knee 225 (LoE 1a) and treatment with ASU was recommended in 3/4 existing guidelines 4.

Table V
Research evidence for efficacy of modalities of therapy not included in OARSI recommendations

<table>
<thead>
<tr>
<th>Modality</th>
<th>Frequency of recommendation in other guidelines</th>
<th>LoE</th>
<th>Research evidence ES pan (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-pharmacological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spa/sauna</td>
<td>1 Guideline only</td>
<td>Ib</td>
<td>0.46 (0.17, 0.75)</td>
</tr>
<tr>
<td>Laser</td>
<td>1 of 6</td>
<td>Ia</td>
<td>−</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>1 of 5</td>
<td>Ia</td>
<td>0.06 (−0.39, 0.52)</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>1 Guideline only</td>
<td>Ib</td>
<td>−</td>
</tr>
<tr>
<td>Electrotherapy/EMG</td>
<td>1 of 8</td>
<td>Ia</td>
<td>0.77 (0.36, 1.17)</td>
</tr>
<tr>
<td>Pharmacological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diacerein</td>
<td>1 of 2</td>
<td>Ib</td>
<td>0.22 (0.01, 0.42)</td>
</tr>
<tr>
<td>SAM-e</td>
<td>−</td>
<td>Ia</td>
<td>0.22 (−0.25, 0.69)</td>
</tr>
<tr>
<td>ASU</td>
<td>3 of 4</td>
<td>Ia</td>
<td>−</td>
</tr>
<tr>
<td>Herbal remedy</td>
<td>−</td>
<td>Ia</td>
<td>−</td>
</tr>
<tr>
<td>Oestrogen</td>
<td>1 Guideline only</td>
<td>IV</td>
<td>−</td>
</tr>
<tr>
<td>Bisphosphonates</td>
<td>−</td>
<td>IV</td>
<td>−</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>1 Guideline only</td>
<td>IV</td>
<td>−</td>
</tr>
<tr>
<td>Surgical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patellar resurfacing</td>
<td>1 Guideline only</td>
<td>Ib</td>
<td>−</td>
</tr>
<tr>
<td>Joint distraction</td>
<td>−</td>
<td>IV</td>
<td>−</td>
</tr>
<tr>
<td>Knee aspiration</td>
<td>−</td>
<td>IV</td>
<td>−</td>
</tr>
</tbody>
</table>

ES = 0.2 is considered small, ES = 0.5 is moderate, and ES > 0.8 is large. SAM-e: S-adenosylmethionine. LoE: Ia: meta-analysis of RCTs; Ib: RCT; Ila: controlled study without randomisation; Ib: quasi-experimental study (e.g., uncontrolled trial, one arm dose-response trial); III: observational studies (e.g., case–control, cohort, cross-sectional studies); and IV: expert opinion.
Other modalities of therapy for hip and/or knee OA for which there is some published suggestion of efficacy, but for which no current recommendations are made in the OARSI guidelines are listed in Table V together with the LoE for efficacy, the ES (95% CI) where this could be calculated and the frequency with which the therapeutic modality is recommended in other guidelines.

UTILITY AND APPLICABILITY

These are OARSI international core recommendations for the treatment of OA of the hip and knee. It is anticipated that they will need to be adapted, and possibly modified, for National and Regional application, where individual modalities of therapy are not available or where there are other organisational barriers to introducing the core recommendations into primary care and specialist practise. In order to facilitate dissemination and implementation the guideline development committee recommends:

- Publication of the guidelines in Osteoarthritis and Cartilage accompanied by a commentary to assist with interpretation.
- Delivery of the document to all OARSI members with encouragement to translate the guidelines into different languages.
- Posting the guidelines with open access on the public section of the OARSI website.
- Fostering contact and liaison with other societies and professional groups representing stakeholders in primary and secondary care worldwide.
- Encouraging other professional and multidisciplinary groups concerned with the management of patients with OA knee and hip in primary and secondary care settings throughout the world to consider using the OARSI recommendations as a starting point for developing their own guidelines.
- Fostering consultation with and feedback from patient representative organisations.
- Encouraging presentation and discussion of the recommendations at National and International conferences and seminars.

RECOMMENDATIONS FOR AUDIT

OARSI recommends audit to assess current treatment of OA of the hip and knee in primary care and specialist practice throughout the world and audits to assess the impact of implementation of the guidelines on clinical outcomes.

UPDATING

OARSI plans to update research evidence annually and the guidelines as appropriate every 3–5 years.

Conflicts of interest

Full final disclosure statements from all members of the OARSI treatment guidelines committee are shown in Appendix 2. Disclosure statements were reviewed by the OARSI ethics committee at the beginning of the guideline development process and again prior to voting on the SOR for each proposition. No potential conflict of interest was identified by the ethics committee that would necessitate the exclusion of any member of the committee or preclude any member from voting on the SOR for any specific treatment proposition. A policy of self-recusal was, however, instituted: “Should a committee member feel that they may be unduly influenced in their vote, based on a consulting or ownership relationship with a particular industrial entity that produces a drug in the class being voted upon, they should recuse themselves from voting on that item in the treatment guidelines”. MH recused himself from voting on the SOR for propositions 13–20 and PT from voting on proposition 15. Subsequent sensitivity analysis, however, showed that inclusion of members’ votes on the propositions from which they were recused would not have altered the SOR on any of the recommendations significantly, with overlapping 95% CIs. The recommendations are endorsed by the OARSI Board, but were developed independently by the OARSI Treatment Guidelines Committee.

Acknowledgements

The authors thank Jane Robertson for work on the literature search; data extraction and database development, Joanna Ramowski for guideline collection and digitisation, and Diann Stern and Helen Richardson for logistics support throughout the project. Financial support came from OARSI.

Appendix 1. Members of the OARSI treatment guidelines committee

Chair	George Nuki, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
Co-chair	Roland W. Moskowitz, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
Lead investigator	Weiya Zhang, Academic Rheumatology, Nottingham City Hospital, University of Nottingham, Nottingham, UK
Members	Steve Abramson, Hospital for Joint Diseases, New York University School of Medicine, New York, NY, USA
	Roy D. Altman, University of California at Los Angeles, Agua Dulce, CA, USA
	Nigel K. Arden, Medical Research Council, Southampton General Hospital, Southampton, UK
	Sita Bierma-Zeinstra, Erasmus Medical Center, Rotterdam, Netherlands
	Kenneth D. Brandt, Indiana University School of Medicine, Indianapolis, IN, USA
	Peter Croft, Keele University, Keele, UK
	Michael Doherty, Academic Rheumatology, Nottingham City Hospital, University of Nottingham, Nottingham, UK
	Maxime Dougdas, Hopital Cochin, Paris, France
	Marc Hochberg, University of Maryland School of Medicine, Baltimore, MD, USA
	Kent Kwoh, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
	Stefan Lohmander, Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
	Peter Tugwell, Institute of Population Health, University of Ottawa, Ottawa, Canada

Conflicts of interest

Full final disclosure statements from all members of the OARSI treatment guidelines committee are shown in Appendix 2. Disclosure statements were reviewed by the OARSI ethics committee at the beginning of the guideline development process and again prior to voting on the SOR for each proposition. No potential conflict of interest was identified by the ethics committee that would necessitate the exclusion of any member of the committee or preclude any member from voting on the SOR for any specific treatment proposition. A policy of self-recusal was, however, instituted: “Should a committee member feel that they may be unduly influenced in their vote, based on a consulting or ownership relationship with a particular industrial entity that produces a drug in the class being voted upon, they should recuse themselves from voting on that item in the treatment guidelines”. MH recused himself from voting on the SOR for propositions 13–20 and PT from voting on proposition 15. Subsequent sensitivity analysis, however, showed that inclusion of members’ votes on the propositions from which they were recused would not have altered the SOR on any of the recommendations significantly, with overlapping 95% CIs. The recommendations are endorsed by the OARSI Board, but were developed independently by the OARSI Treatment Guidelines Committee.

Acknowledgements

The authors thank Jane Robertson for work on the literature search; data extraction and database development, Joanna Ramowski for guideline collection and digitisation, and Diann Stern and Helen Richardson for logistics support throughout the project. Financial support came from OARSI.

Appendix 1. Members of the OARSI treatment guidelines committee

Chair	George Nuki, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
Co-chair	Roland W. Moskowitz, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
Lead investigator	Weiya Zhang, Academic Rheumatology, Nottingham City Hospital, University of Nottingham, Nottingham, UK
Members	Steve Abramson, Hospital for Joint Diseases, New York University School of Medicine, New York, NY, USA
	Roy D. Altman, University of California at Los Angeles, Agua Dulce, CA, USA
	Nigel K. Arden, Medical Research Council, Southampton General Hospital, Southampton, UK
	Sita Bierma-Zeinstra, Erasmus Medical Center, Rotterdam, Netherlands
	Kenneth D. Brandt, Indiana University School of Medicine, Indianapolis, IN, USA
	Peter Croft, Keele University, Keele, UK
	Michael Doherty, Academic Rheumatology, Nottingham City Hospital, University of Nottingham, Nottingham, UK
	Maxime Dougdas, Hopital Cochin, Paris, France
	Marc Hochberg, University of Maryland School of Medicine, Baltimore, MD, USA
	Kent Kwoh, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
	Stefan Lohmander, Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
	Peter Tugwell, Institute of Population Health, University of Ottawa, Ottawa, Canada
Appendix 2. Committee members disclosures

<table>
<thead>
<tr>
<th>Name</th>
<th>Consulting fees, honoraria, research or institutional support, educational grants, equipment, services or expenses</th>
<th>Ownership interest</th>
<th>Business relationship</th>
<th>Service with organisation with interests comparable to OARSI</th>
<th>Nothing to declare</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Zhang</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Leader EULAR OA task force</td>
<td>Nil</td>
</tr>
<tr>
<td>R.W. Moskowitz</td>
<td>Adolor, Anesiva, Bioiberica, Bionicare, Endo, Merck, Novartis, Pfizer, Rottapharm, Sanofi-Aventis</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>G. Nuki</td>
<td>AstraZeneca, Savient</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>S. Abramson</td>
<td>Amgen, GlaxoSmithKline, Merck, Novartis, Pfizer, Proprius, Reliant, Rottapharm, Sanofi-Aventis</td>
<td>Amgen</td>
<td>BMS</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>R.D. Altman</td>
<td>Abbott, Anesiva, Ferring, Kinicure, McNeil, Negma, Novartis, Pfizer, Reliant, Rottapharm, Sanofi-Aventis</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>N. Arden</td>
<td>Merck, Sharp & Dohme, Novartis, Pfizer, Proctor & Gamble, Q-Med, Roche, Rottapharm, Schelling-Plough, Servier</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>S. Bierma-Zeinstra</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>K.D. Brandt</td>
<td>Anesiva, Genzyme, Novartis, Pfizer</td>
<td>Pfizer</td>
<td>Nil</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>P. Croft</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>M. Doherty</td>
<td>AstraZeneca, GlaxoSmithKline, IDEA technology, Ipsen, Novartis, Reckitt</td>
<td>Nil</td>
<td>Nil</td>
<td>EULAR OA task force</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2 (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Consulting fees, honoraria, research or institutional support, educational grants, equipment, services or expenses</th>
<th>Ownership interest</th>
<th>Business relationship</th>
<th>Service with organisation with interests comparable to OARSI</th>
<th>Nothing to declare</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Dougados</td>
<td>Abbott, AstraZeneca, BMS, CombinatoRx, Merck, Negma, Novartis, Pfizer, Pharmasciences, Proctor & Gamble, Roche, Wyeth</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>M. Hochberg</td>
<td>Amgen, AstraZeneca, Bayer, Biogen Idec, Bionicare, Bristol Myers Squibb, Chugai, CombinatoRx, Dainippon Sumitomo, Ferring, Genzyme, GlaxoSmithKline, Merck, NicOx, Novartis, Proctor & Gamble, Proprius, Roche, Sanofi-Aventis, Wyeth</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>D.J. Hunter</td>
<td>AstraZeneca, Donjoy, Merck, Pfizer, Stryker</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>K. Kwoh</td>
<td>Beveridge Inst, GlaxoSmithKline, Novartis, TAP</td>
<td>Cartesia</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>L.S. Lohmander</td>
<td>AstraZeneca, Centocor, GlaxoSmithKline, Pfizer</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>P. Tugwell</td>
<td>Abbott, Almirall, AstraZeneca, Aventis, Berlex, Biomatrix, Bristol Myers Squibb, Cadeceus, Centocor, CIGNA, Dimedix, Dimethiad, IDRC, Eli Lilly</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
</tbody>
</table>

(continued on next page)
Appendix 2 (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Consulting fees, honoraria, research or institutional support, educational grants, equipment, services or expenses</th>
<th>Ownership interest</th>
<th>Business relationship</th>
<th>Service with organisation with interests comparable to OARSI</th>
<th>Nothing to declare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genzyme</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Glaxo-Welcome</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>GlaxoSmithKline</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Hoechst Marion</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Roussel</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Innoven</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Johnson&Johnson</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Lilley</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Medicus</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Merck</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Merck Frost</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Novartis</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Novopharm</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Ortho McNeil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Parke Davis</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Pennside</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Pfizer</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Rhone-Poulenc</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Roche</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Sandoz</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Scios</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Seattle</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>SmithKline</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Beecham</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Teva</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Wyeth Ayerst</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
</tbody>
</table>

References

160

W. Zhang et al.: OARSI recommendations for the management of hip and knee OA

Osteoarthritis and Cartilage Vol. 16, No. 2

